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Abstract

This paper gives a summary of the DMI and EDFI real-time scheduling algorithms, first presented by P. G.
Jansen. During this discussion a number of imperfections in the existing theory are corrected.

Several additions to the existing theory are presented as well, including a dynamic task admission condition,
support for non-preemptable nested critical sections and multi-use resources.

Both the DMI and EDFI schedulers together with their accompanying admission control mechanisms have
been implemented in the RT-Linux operating system. The DMI and EDFI scheduler organisation has been
adapted to work within the existing RT-Linux scheduler framework. Special care has been taken during the
implementation of the schedulers to keep their worst case overhead behavior as low possible.

The implementation has been verified for its correctness using several tools that we developed. A variety of
tests have been executed to get an indication of the scheduler performance under various conditions. Results
show that the scheduling overhead is relatively low, less than one percent for a task set that could arguably
resemble a real-life situation.
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Samenvatting

Dit paper geeft een samenvatting van de DMI en EDFI real-time scheduling algoritmen, voor het eerst beschre-
ven door P.G. Jansen. Tijdens deze verhandeling worden enkele onvolkomenheden in de bestaande theorie
gecorrigeerd.

Enkele toevoegingen aan de bestaande theorie worden gepresenteerd, zoals een dynamische taak toevoegings-
conditie, ondersteuning voor niet-onderbreekbare geneste kritieke secties en zogenaamde multi-use resources.

Zowel de DMI als EDFI scheduler zijn, samen met hun bijbehorende toelatingscontrole-mechanismen, geı̈mple-
menteerd in het RT-Linux besturingssysteem. De DMI and EDFI scheduler organisatie is aangepast om te
werken binnen het RT-Linux scheduler raamwerk. In onze implementatie hebben we gepoogd het worst-case
overhead gedrag van de schedulers zo laag mogelijk te houden.

De implementatie is gecontroleerd op zijn correctheid door gebruik te maken van enkele door ons ontwikkelde
gereedschappen. Een verscheidenheid van tests is uitgevoerd om een indicatie te krijgen van de scheduler
prestaties onder verschillende condities. Resultaten laten zien dat de scheduling overhead relatief laag is,
minder dan één procent voor een taakset die een real-life situatie probeert na te bootsen.
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Chapter 1

Introduction

This report describes the research that was conducted as part of a graduation assignment. The subject centers
around real-time computing, or to be more precise, real-time scheduling. Broadly stated, real-time scheduling is
the field of research where the timely execution of tasks must be guaranteed. Tasks are generally executed on a
periodic basis, with a fixed time interval between each successive execution. The execution must be guaranteed
to be finished before a specific point in time, regardless of other jobs that the system might have to perform.

Guarantees are not too hard to give when there are only one or two tasks in the system. However, as one can
imagine it becomes more difficult to give any timing guarantees when there are a tens of tasks to execute, each
possibly with different computational demands.

Quite a number of algorithms have been devised over the last few decades with the purpose to assign tasks to
the central processing unit of a system in such a way that the required timing guarantees can be given. Such
algorithms are generally known as real-time scheduling algorithms.

This paper deals with two scheduling algorithms which were first described by Jansen[8] called Deadline
Monotonic with Inheritance (DMI) and Earliest Deadline First with Inheritance (EDFI). Both algorithms can
give the required timing guarantees, even when handling complex task sets. Additionally, both algorithms have
the capability to still ensure the timely execution of tasks when they are allowed to acquire resources. Resources
are (often) physical entities with a special capability a task might require. Think for example about a radio that
can be used by tasks to transmit data over a radio channel. Often only a single task is allowed to use the radio
at any moment in time. If two tasks try to send data simultaneously over the same channel, their signals might
interfere and come out scrambled.

1.1 Goals

The goals of the research described in this paper can be summarized as:

• Create a complete implementation of the DMI and EDFI theory described by Jansen[8].

• Expand the DMI and EDFI theory to allow for dynamic task admission, non-preemtable nested critical
sections and multi-use resources. Implement these additions as well.

• Measure the overhead of the implemented DMI and EDFI algorithms

By implementing the DMI and EDFI algorithms, we can verify that the theory can be used in practice. Fur-
thermore, the implementation can be used as a testbed for various other research projects. The token based
real-time network RTnet[7] for example could be reimplemented on an EDFI based real-time kernel, as it
currently depends on the non real-time Linux kernel.

1



1. Introduction

The expansion of the existing theory in the areas described above make the DMI and EDFI scheduling algo-
rithms more useful in practice. All expansions are simple to describe, trivial to verify for their correctness, and
relatively easy to implement. The expansions are part of this paper as this paper focuses for a big part on the
practical aspects of DMI and EDFI.

Insight into the overhead that the algorithms generate is importance to their usefulness in practice. This paper
will present an analysis of the overhead that the implemented algorithms generate, albeit not an in depth anal-
ysis. While the overhead can be determined with great precision1, such an exhaustive research is outside the
scope of this paper.

1.2 Overview

A short overview of the current state of affairs in the world of real-time scheduling will be presented in chapter
2. It introduces the reader to the basic concepts of real-time scheduling algorithms and places this research into
its proper context.
Chapter 3 will describe the existing DMI and EFDI theory and will add several corrections to the original work.
Several additions to the existing theory will be presented, such as a sufficient condition under which dynamic
task admission is allowed, a solution to allow non-preemptable nested critical sections, and a theory under
which multi-use resources can be allowed.
Chapter 4 will give an overview of the Real-Time Linux operating system architecture. Adaptations to this
architecture will be presented to allow for an efficient implementation of DMI and EDFI.
Chapter 5 will describe our implementation of DMI and EDFI in Real-Time Linux. The additions and changes
to the application programming interface are documented, processes are described in terms of low level func-
tionality, and several performance considerations will be addressed.
Chapter 6 will describe how the correctness of the scheduler implementation was verified. Furthermore the
scheduler performance will be analysed. Scheduling data will be retrieved by executing a number of carefully
chosen test cases on a particular target platform. Tests are executed to measure the behavior of various sched-
uler aspects and to determine the average and worst case scheduling overhead under various conditions.
Chapter 7 will describe the future work that could be done based on this research.
Chapter 8 will finally present several conclusions that can be drawn from the research presented in this paper.

1The commercial VxWorks operating system developed by the company Wind River is an example of a real-time system for which the
scheduler overhead has been examined into the finest detail
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Chapter 2

Real-time scheduling

Paragraph 2.1 will discuss the basic concepts used in the field of real-time scheduling. These concepts will be
used throughout this paper. Paragraph 2.2 will describe in short the existing real-time scheduling theory that is
related or relevant to this research, and will place this research into the proper context.

2.1 Basic concepts

For the reader who is unfamiliar in the field of real-time scheduling we will start by presenting several com-
monly used definitions:

Definition 1 (Task τi). A real-time task τi is described by the tuple (Di, Ci, Ti). Di denotes the relative
deadline of τi, Ci its load and Ti its period.

Tasks are executed periodically. Each specific occurrence is called a job.

Definition 2 (Job τ j
i ). A job τ j

i is the jth invocation of task τi. It is described by the tuple (rj
i , D

j
i , C

j
i ), where

rj
i represents the starting time or release time of τ j

i , Dj
i its relative deadline and Cj

i its load.

The interval between two subsequent jobs τ j
i and τ j+1

i is equal to the period of the task to which they belong,
Ti. The relative deadline is the time interval in which the job should finish its execution, starting from job’s
release time. The condition Di ≤ Ti is thus assumed to hold. The load of a task is the amount of computation
time that is needed to execute a job. This implies that the condition Ci ≤ Di should always hold.

Definition 3 (Task set Γ). A task set Γ is a set of tasks {τ1, τ2, ..., τn} that is presented to the scheduler for
execution.

A scheduler assigns jobs given a task set to the processor for execution at specific times. The collection of
assignments is called a schedule. The scheduler constructs this schedule by executing a scheduling algorithm,
several of which will be discussed in paragraph 2.2.
A real-time scheduler has the additional ability of giving guarantees about the timely execution of a job. It can
predict in advance if a task set scheduled using particular scheduling algorithm is possible or not: if all jobs will
meet their deadline the task set is said to be feasible under that algorithm; it is said to be infeasible otherwise.

Definition 4 (Utilisation U ). The utilisation U denotes the amount of load that a task set Γ imposes on a system.
The utilisation U is expressed by a value 0 ≤ U ≤ 1, and is defined as:

U =
n∑

i=1

Ci

Ti
(2.1)

3



2. Real-time scheduling

2.2 Overview

2.2.1 Periodic real-time scheduling

One of the first described periodic task scheduling algorithms is called Rate Monotonic (RM). This algorithm
is a simple rule that assigns fixed priorities to tasks. The shorter the period, the higher the priority. Tasks are
preemptable, and their relative deadlines are assumed to be equal to their period. Liu and Layland[11] showed
that RM is optimal1 in the class of fixed priority algorithms.

A fixed priority scheduling algorithm closely related to RM is called Deadline Monotonic (DM), first proposed
by Leung and Whitehead[13]. The difference with RM is that tasks can have a relative deadline that is smaller
than their period. Table 2.1 shows a specification for an example task set called Γ. When scheduling this task
set under DM, a schedule as depicted in figure 2.1 can be constructed. The up pointing arrows denote the start
of a new period (also called a job release), while the down pointing arrows denote absolute job deadlines. The
gray boxes depict that a job is executing. As can be seen in this example, the highest priority task τ1 will
preempt the lowest priority task τ3 at time t = 8.

Γ D T C
τ1 3 4 1
τ2 4 5 1
τ3 7 7 3

Table 2.1: Example task set Γ

Figure 2.1: Execution of Γ under DM

Earliest Deadline First (EDF) is, in contrast to the previous algorithms, a dynamic scheduling algorithm. Pri-
orities are assigned based on the absolute deadline of a task. The earlier the deadline of a task, the higher
its priority will be. Tasks are assumed to be preemptable. EDF is optimal in the class of dynamic priority
algorithms. Liu and Layland[11] showed that a task set is schedulable under EDF if, and only if: U ≤ 1.

A number of variations on the scheduling algorithms described above have been presented over the past few
decades. Some algorithms allow the execution of aperiodic tasks while still providing guarantees for periodic
tasks2, some handle precedence constraints between tasks3 and even others are suited for use on multiprocessor
systems4. Although interesting, these algorithms are out of the scope of this paper.

1Optimal in this context means that if a task set can be scheduled using any fixed priority assignment other than RM, then it can also be
scheduled by RM.

2A well known system for handling aperiodic requests in a real-time system is the Total Bandwidth Server, proposed by Spuri and
Buttazzo[18][19].

3Lawler was the first to solve the simple scheduling problem of a set of tasks with no preemption, identical arrival times, and a
precedence relation among them[12].

4Most multiprocessor scheduling problems are NP-complete and they are the cause of an interesting set of multiprocessor anomalies,
called Richard’s anomalies[5].
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2.2.2 Resource scheduling

Another group of real-time scheduling algorithms not mentioned in the previous paragraph is the group that
deals with resource scheduling. This is the area of real-time scheduling that describes the context for research
presented in this paper. Resource scheduling provides the functionality to create critical sections on a scheduler
level. Within these sections tasks can access resources, such as a radio transmitter, without interference from
other tasks that want to access the same resource.

The means by which critical sections are created differs between various algorithms, each having their own
advantages and drawbacks. Audsley[1] has given a good overview of the existing techniques for dealing with
resource control.
One of the most widely used techniques is called priority inheritance. This technique makes a task adopt
the priority of another task to block tasks that would normally have a higher priority from executing. When
not using this technique carefully, phenomena such as deadlocking and chained blocking can cause severe
problems. A deadlock occurs when tasks are waiting for each other to release their resources, leaving the
system in a state that cannot be left. Chained blocking occurs when a task must acquire resources that are
currently held by more than one task; the task is blocked from executing until all the required resources are
released by the tasks holding them.
Another problem that arises when using priority inheritance is called priority inversion[3], p184. This problem
occurs when a low priority task has acquired a resource that a higher priority task also needs to acquire. This
high priority task is then blocked from execution. Now the low priority task (that must release its resource
before the high priority task can execute) can be preempted by a medium priority task that does not require that
resource.

The algorithms based on priority inheritance that are of the most interest to this paper are listed below. While
we will shortly address their workings here, the reader is encouraged to familiarize himself with the theories
behind these algorithms:

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

• Stack Resource Policy (SRP)

The PIP rule set[17] allows a resource R to be acquired when it is free. When R is already acquired by a lower
priority task, the lower priority task will inherit the priority of the higher priority task. While this prevents the
priority inversion problem from occurring, it does not prevent deadlocks or chained blocking.
The motivation of the PCP is to address the deadlock and chained blocking problems. The PCP rule set assigns
a priority ceiling to each resource equal to the highest priority of all the tasks that acquire it. A task can only
acquire a resource if its priority strictly greater than the ceilings of all currently acquired resources. Similar to
the PIP a task executes at its normal priority unless it blocks a higher priority task, upon which it will inherit
the priority of the blocked task5. A drawback of PCP is that it is relatively pessimistic in terms of blocking
time[16][17].
The SRP provides several improvements to the PCP, such as support for multiunit resources6 and support for
tasks with dynamic priorities. A key feature of this protocol is a fixed preemption level that is assigned to each
task that controls how tasks may preempt each other. A task with a low preemption level will be prevented from
preempting a task with a high preemption level[2]. Several ideas found in the SRP have influenced the creation
of the DMI are EDFI algorithms that are discussed in the next chapter.

5A number of variations on the PCP have been presented over the years, such as the Semaphore Control Protocol[14], the Dynamic
Priority Ceiling Protocol[4] and the Ceiling Semaphore Protocol[15]. Although these algorithms present a lot of interesting contextual
information to the research presented in this paper, their exact workings are outside the scope of this paper.

6Multiunit resources allow multiple readers and/or writers to simultaneously acquire a unit of that resource until all units are handed
out.
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Chapter 3

DMI and EDFI foundations

Our research is based upon the DMI and EDFI scheduling algorithms, which were both originally presented
by Jansen[8]. To make the research presented in this paper more accessible, we will first recapitulate the foun-
dations of DMI and EDFI. This is done in the sections 3.1 to 3.41. These sections also contain a number of
corrections to errors that were present in the original work.
As we do not simply want to rehash the original work, we will only present the theorems, equations and defini-
tions that are needed to understand this research. If the reader wants a broader background on both algorithms,
he is advised to read Jansen’s original work.
Several extensions to the existing DMI and EDFI theory are presented in the sections 3.5 to 3.7. These ex-
tensions include support for dynamic task admission, non-preemptable nested critical sections, and multi-use
resources.

3.1 Introduction

The DMI and EDFI scheduling algorithms are, the names imply, closely related to the DM and EDF algorithms
respectively. DMI is basically DM with support for deadline inheritance. Similarly is EDFI basically EDF
with deadline inheritance. The additional support for deadline inheritance allows the scheduler to support the
use of resources. The beauty of these algorithms lies in the fact that the means by which resource scheduling is
achieved is both elegant and easy to comprehend. This in contrast to the relative complexity of Stack Resource
Protocol for example.

3.2 Resource scheduling

To support resource scheduling in a transparent way to application developer, the scheduler needs to know
which resources a task uses, how long it uses them, when it uses them, and if it just “reads” the resources, or
“writes” them as well. Without this information, the scheduler can not calculate the feasibility of a given task
set or prevent deadlocks and the priority inversion problem (see paragraph 2.2.2).

A resource usage specification language has been devised to describe all the resource usage information that
the scheduler needs. The language we present here is similar to the, slightly less generic, language described
by Jansen[9]:

1This research will only focus on the DMI and EDFI theory that is based on nested critical sections (NCS). Transaction based DMI and
EDFI scheduling is considered to be a special case of NCS based scheduling
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3. DMI and EDFI foundations

ρlist : float ′{′ Rlist ρlist
′}′ ρlist

∗

Rlist : R R∗

R : ′a′..′z′ | ′A′..′Z ′

A particular resource is denoted by a letter. By convention, a capital letter is used when a tasks writes the
resource. A non-capital letter is used if the task just reads the resource.

An example resource usage description could look like “2.0 {A}”, which would translate as: a task writes
resource A for 2.0 units of time. A more complex example might look like “3.0 {A B 2.0 {c} 0.5 {d}}”, which
would translate as: a task writes both resources A and B for 3.0 units of time; within that time, resource C is
read for 2.0 units of time and after resource C is released, resource D is read for 0.5 units of time.

Every task is accompanied by resource usage description which consists of zero or more sections separated by
curly brackets, ’{’ and ’}’. The sections can be embedded in each other, as the grammar and the examples
in the previous paragraph show; every section hence called a nested critical section, or NCS in short. While
executing, a task will enter and leave its nested critical sections in a subsequent manner. Critical stems from
the fact that when a task enters particular NCS, it must be guaranteed that it can acquire the resources specified
in that NCS without interference from other tasks.

Definition 5 (NCS length Ci,j). The length of the jth NCS of task τi is denoted by Ci,j .

3.2.1 Deadline inheritance

Whenever more than one task reads and/or writes the same resource, interference problems might arise. Re-
sources are expected to be written to in a mutual exclusive manner; ie. a task must be able to write to a resource
without interference from other tasks that want to read or write that resource. Other tasks can only acquire
that resource for reading or writing after it is released again by the task that acquired it. Reading a resource is
assumed to be allowed to take place in parallel.

To prevent tasks from acquiring resources that are already in use, so called resourcefloors have been defined
by Jansen[8], p32-36. Each resource R has a distinct read floor Dr

R and write floor Dw
R. We have adapted the

original definitions slightly to express their purpose more clearly:

Definition 6 (Read floor Dr
R).

Dr
R = min{{Di|τi ∈ γw(R)} ∪ {∞}} (3.1)

where γw(R) is the set of tasks that write R.

Definition 7 (Write floor Dw
R).

Dw
R = min{{Di|τi ∈ γw+r(R)} ∪ {∞}} (3.2)

where γw+r(R) is the set of tasks that read and/or write R.

Given these definitions, Jansen defined the inherited deadline ∆i,j for NCS j of task τi as:

Definition 8 (NCS inherited deadline ∆i,j).

∆i,j = min({Di} ∪ {Dr
R|R ∈ φr

j(τi)} ∪ {Dw
R|R ∈ φw

j (τi)}) (3.3)

where φr
j(τi) is the set of resources that are read by τi in NCS j, and φw

j (τi) the set of resources that are written
by τi in NCS j.

This inherited deadline definition can be used to prevent tasks from acquiring resources that are already in use.
The way in which this is achieved will be discussed in the next section.
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Figure 3.1: DMI / EDFI protocol organisation

3.3 Protocol organisation

The DMI and EDFI protocols share the same organisation, which is graphically depicted in figure 3.1. The
organisation consists of a so-called run stack, ready queue and waiting queue. Tasks in the waiting queue are
waiting until their periodic release timer is fired. When this happens for a particular task, it is moved to the
ready queue. The tasks in the ready queue are waiting until the scheduler allows them to run on the processor.
Whenever they are selected for execution, the tasks are placed on top of the run stack. Only the topmost task on
the run stack is executing, while the tasks below it are preempted. When a task finished executing, it is moved
to the waiting queue again. The life cycle of the task will then repeat itself.

To acquire resources in a mutually exclusive manner, a task “enters” one of its nested critical sections. When
a task τi enters its jth NCS, it will adopt the inherited deadline level ∆i,j of that NCS, and assign it to its own
inherited deadline level, ∆i. The rule sets that define DMI and EDFI then ensure that the task can acquire the
resources specified in the entered NCS without interference, Jansen[8], p36 and p51:

Definition 9 (DMI protocol rules). Deadline Monotonic with Inheritance is defined by the following rules:

1. Released but not yet running jobs or preempted jobs are ordered by their deadline intervals Di.

2. Job τf from the ready queue with the shortest deadline, say Df , is selected for processor competition.

3. τf will preempt the running job τr iff Df < ∆r, where ∆r is the current inherited deadline level of τr.

Note that because of the existence of nested critical sections, ∆r is not a fixed value and can change over time.

Definition 10 (EDFI protocol rules). Earliest Deadline First with Inheritance is defined by the following rules:

1. Released but not yet running jobs or preempted jobs are ordered by their absolute deadlines dj
i .

2. Job τ j
f from the ready queue with the shortest relative deadline, say dj

f , is selected for processor compe-
tition.

3. τ j
f will preempt the running job τ l

r iff (dj
f < dl

r)∧(Df < ∆r), where ∆r is the current inherited deadline
level of τr.

Again, note that because of the existence of nested critical sections, ∆r is not a fixed value and can change over
time. Observe that these rule sets maintain an ordered run stack. This ordering is responsible for making sure
resources can be acquired without interference.

9



3. DMI and EDFI foundations

3.3.1 Properties

The DMI and EDFI algorithms share several important properties, which are stated by theorem 1, 2 and 3.
These properties are important to this research as several theorems and their proofs that are presented in this
paper depend on them.

Theorem 1 (Blocking condition). If τk
i is blocked by τ l

j then ∆j ≤ Di < Dj

Theorem 2 (One blocker). A job τk
f can be blocked by at most one running or preempted job.

Theorem 3 (Automatic mutex). The DMI and EDFI protocols guarantee mutual exclusion of shared resources.

The validity of each of these three properties has been proved for both DMI and EDFI by Jansen[8].

3.4 Feasibility analysis

3.4.1 DMI feasibility

The DMI feasibility analysis is built around the fixed priorities of the DM algorithm. The feasibility analysis
algorithm for a task set Γ = {τi, τi+1, ..., τn} (sorted by priority) starts by checking the feasibility of a task set
that contains only the highest priority task τi. The maximum blocking Cb,i task τi can encounter would be:

Cb,i = max
j=i+1..n,k

{Cj,k|∆j,k ≤ Di < Dj} (3.4)

If Ci + Cb,i ≤ Di holds, ie. taui meets its deadline, then the task set {τi} is feasible. The algorithm then
restarts and adds the second highest priority task τi+1 to the task set to investigate. To check the feasibility of
the resulting task set {τi, τi+1}, we only need to check if τi+1 can complete before its deadline Di+1. τi+1

won’t interfere with the execution of τi, as τi has a higher priority. It can only possibly block τi, but that
blocking was already taken into account in the previous run of the algorithm. The task set is therefore still
feasible iff: Ci+1 + Cb,i+1 +

⌊
Di+1

Ti

⌋
Ci ≤ Di+1, where

⌊
Di+1

Ti

⌋
Ci is of course the load of the invocations

of τi imposed on the execution of τi+1, and Cb,i+1 the blocking that τi+1 can encounter. If the task set is still
feasible, then algorithm is restarted to investigate the task set {τi, τi+1, τi+2} in a similar way. This process
will continue until infeasibility is determined, or Γ is dubbed feasible.

Jansen[8], p42 presented a pseudo code algorithm that performed the DMI feasibility analysis process. We will
use a slightly modified version of that algorithm which supports nested critical sections (as described above)
and resolves some imperfections2 that were present in the original algorithm:

Algorithm DMI feasibility analysis
1. doneList← (); interfereList← (); todoList← ((0, 1), (0, 2), ..., (0, n));
2. schedulabe← true;
3. while (non empty(todoList) && schedulable) {
4. (t, j)← shift(todoList);
5. putOrdered(doneList, (t, j));
6. W ← max{Ck,l|∆k,l ≤ Dj < Dk};
7. interfereList← doneList;
8. (t, i)← first(interfereList);
9. while ((t < Dj) && ((t == 0) || (W > t))) {
10. W ←W + Ci;

2The original algorithm missed the ((t == 0) || (W > t)) condition shown here in line 9, which resulted in a positive feasibility
outcome at time t = 0 for any task set
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3.4. Feasibility analysis

11. shift(interfereList);
12. putOrdered(interfereList, (t + Ti, i));
13. (t, i)← first(interfereList);
14. }
15. schedulable← (W ≤ Dj);
16. }

An optimized version of DMI feasibility analysis algorithm was presented by Jansen as well[10]. The optimized
version does not have to recalculate the interference during every iteration of the algorithm caused by the subset
of tasks that was already found being feasible. It is however harder to intuitively comprehend and it would need
some minor adjustments to support nested critical sections.

3.4.2 EDFI feasibility

The EDFI feasibility analysis is based around the processor demand function H(t), which describes the amount
of work that should be completed at a given time. H(t) is defined as:

H(t) =
n∑

i=1

⌊
t−Di + Ti

Ti

⌋
Ci (3.5)

If at time a particular time L the amount of work that should be finished is greater than L, ie. H(L) > L, the
task set can not be feasible. Liu and Layland showed[11] that a task set Γ scheduled by EDF is feasible iff:

∀L :
n∑

i=1

L−Di + Ti

Ti
Ci ≤ L (3.6)

Theorem 4 (EDF bounded feasibility). Given equations 2.1 and 3.5, equation 3.6 can not be false anymore
after a certain point Lb, also known as the Baruah bound:

Lb =

∑n
i=1(1−

Di

Ti
)Ci

1− U
(3.7)

if Lb 6= 0.

In other words, feasibility can be concluded after Lb if it is non-zero. While Jansen[8], p58 states correctly that
equation 3.7 is valid for large values of U < 1, we will show that it is in fact valid for all values of U < 1.
A special case occurs when Lb equals 0. Feasibility can then be concluded if U ≤ 1. Infeasibility can be
concluded otherwise.

Proof. This is a special case of the proof we will give for theorem 5. Equations 3.7 and 3.12 differ in the fact
that the latter includes blocking. As blocking does not occur in proper EDF, we can define in the proof for
equation 3.12 the blocking function Cb(t) as Cb(t) = 0 for all t ≥ 0, and define the maximum blocking Cm

that can occur as being 0. The proof can then be applied to equation 3.7 as well.

For the feasibility of a task set under EDFI, blocking has to be taken into account. Jansen [8], page 59 extends
equation 3.6 to include blocking, stating that a task set Γ is feasible under EDFI iff:

∀L : 0 ≤ L ≤ LI : H(L) + Cb(L) ≤ L (3.8)

with
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Cb(t) = max
i:1..n
{Ci|∆i ≤ t < Di} (3.9)

and LI the shortest interval [0, t] for which W (t) = t holds, with

W (t) =
n∑

i=1

⌈
t

Ti

⌉
Ci (3.10)

Observe that 3.9 only applies to blocking for transactions. We will use a blocking equation that supports nested
critical sections:

Cb(t) = max
i,j
{Ci,j |∆i,j ≤ t < Di} (3.11)

Without proof we state that this does not have any effect on the validity of the feasibility condition expressed
by equation 3.8.

Similar to the upper bound for EDF presented in theorem 4 we can give an upper bound for the feasibility
analysis of EDFI as well. Jansen[8], p58 states that for large values of U this upper bound is in fact equal
to the upper bound given by equation 3.7. While correct, “large” is quite arbitrary and difficult to use in an
implementation. Even more, if U is “small” the equation does not apply.
Nonetheless, the upper bound given by LI might be improved upon for all values of U < 1, as we show in the
following theorem:

Theorem 5 (EDFI bounded feasibility). Equation 3.8 can not be false after a certain point LB:

LB =

∑n
i=1(1−

Di

Ti
)Ci + Cm

1− U
(3.12)

with

Cm = max
i,j
{Ci,j |τi ∈ Γ} (3.13)

if LB 6= 0.

In other words, feasibility can be concluded after LB if it is non-zero.

Proof. The outline of this proof is depicted graphically in figure 3.2. Using equations 2.1, 3.5 and 3.13 we
construct a linear function f(t) = at+ b in such a way that f(t) ≥ H(t)+Cb(t) holds for all t ≥ 0. After f(t)
has been constructed we calculate for which value of LB the equation f(LB) = LB holds. If H(t)+Cb(t) ≤ t
holds for all values of t : 0 ≤ t < LB , then H(t) + Cb(t) ≤ t can not be invalid anymore for t ≥ LB , as
H(t) + Cb(t) ≤ f(t) by definition.

Following this outline, we find:

H(t) =
n∑

i=1

⌊
t−Di + Ti

Ti

⌋
Ci =

n∑
i=1

⌊
1− Di

Ti
+

t

Ti

⌋
Ci =

n∑
i=1

⌊
Ci −

CiDi

Ti
+ t

Ci

Ti

⌋

≤
n∑

i=1

(
Ci −

CiDi

Ti
+ t

Ci

Ti

)
= Ut +

n∑
i=1

(
1− Di

Ti
Ci

) (3.14)

As Cb(t) ≤ Cm for all t ≥ 0 (by definition), we can state:

12



3.4. Feasibility analysis

Figure 3.2: LB proof outline

H(t) + Cb(t) ≤ Ut +
n∑

i=1

(
1− Di

Ti
Ci

)
+ Cm (3.15)

Equation 3.15 gives us a candidate for f(t) = at+ b, where a = U and b =
∑n

i=1

(
1− Di

Ti
Ci

)
+Cm. Solving

f(t) = t gives us the upper bound LB :

t = Ut +
n∑

i=1

(
1− Di

Ti
Ci

)
+ Cm

t− Ut =
n∑

i=1

(
1− Di

Ti
Ci

)
+ Cm

(1− U)t =
n∑

i=1

(
1− Di

Ti
Ci

)
+ Cm

t =

∑n
i=1

(
1− Di

Ti
Ci

)
+ Cm

1− U
= LB

(3.16)

Observe that a special case occurs when LB equals 0. This can only happen when there is no blocking at all
(ergo, the schedule is a normal EDF schedule) and all relative deadlines are equal to their periods. b from the
processor demand upper bound function f(t) = at + b equals 0 whenever this happens, reducing the function
to f(t) = at. As we found that f(t) = Ut is a suitable upper bound, it is enough to check that U ≤ 1 to ensure
the validity of equation 3.8.

Equations 3.8 and 3.12 show that there is no need to investigate feasibility beyond min{LB , LI}. We can
thus extend the feasibility analysis algorithm presented by Jansen[8], p62 (which is a codified representation of
equation 3.8) to include this condition. Including the additional support for nested critical sections we get the
EDFI feasibility algorithm we will use for our implementation:
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Algorithm EDFI feasibility analysis
1. H ← 0; W ← 0; schedulable← unknown;
2. while (schedulable = unknown) {
3. (t, f lag, C)← GetNextEvent
4. case (flag) {
5. deadline:
6. H ← H + C
7. Cb = max

j,k
{Cj,k|∆j,k ≤ t < Dj}

8. if (H + Cb > t) then schedulable← no
9. release:
10. if (t > 0 ∧W ≤ t) then schedulable← yes
11. W ←W + C
12. }
13. if (schedulable = unknown ∧ t > LB) then schedulable← yes
14. }

3.5 Dynamic task admission

A real-time system without the possibility to add or remove tasks at run-time can be too inflexible for practical
use. The ability to add to a running real-time system is called dynamic task admission, or DTA in short.

Several issues have to be taken into account when allowing DTA under DMI or EDFI, some of which are design
issues, and some of which are implementation issues. The design issues are discussed in this section, while
implementations issues such as performance impact and scheduling overhead are discussed in the chapters 5
and 6. Conditions under which DTA is allowed will be derived using the EDFI protocol rules. Note however
that these conditions hold for DTA under DMI as well. The complete breakdown for DMI will be left as an
exercise to the reader.

The DTA process is complex, and involves re-executing the feasibility analysis using the combined running
task set and the task set that wants to enter the system. This means that the properties of the resource usage of
both task sets have to be combined, the resource floors and ceilings have to be recalculated, and the inherited
deadlines of the nested critical sections have to be adjusted. If the combined task set turns out to be feasible, one
has to ensure that the admission of the new tasks does not interfere with, or obstruct the current task execution.

Problem 1 (∆ level changes).
One of the most obvious problems that arises when new tasks are added into an already running system is
the change in inherited deadlines values of the tasks that are already in the system. To explain this problem,
consider task set Γ shown in table 3.1.

Γ D T C ∆i,1 Resources
τ1 4 5 1 4 0.1{A}
τ2 4 6 1 4 0.5{A B}
τ3 5 6 1 5 1.0{C}

Table 3.1: Specification of Γ

Assume a new task τ4 = (3, 4, 1) with resource usage specification “0.2{C}” is added to Γ. As a result, the
inherited deadline of τ3 will drop from 5 to 3. The problem of recalculating the inherited deadline values and
applying those the changes to every nested critical section while the system is online is considered to be an
implementation issue. The details on how this can be accomplished will be discussed in chapter 5.

Problem 2 (Run stack ordering).
The run stack can not be guaranteed to stay ordered if at any moment in time the inherited deadline value of a
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Figure 3.3: Example run stack for Γ Figure 3.4: Example run stack for Γ after admis-
sion of τ4

nested critical section can change. Consider the example run stack for Γ shown in figure 3.3.

Assume that at this moment in time τ4 would enter the system. This would cause ∆3 to drop from 5 to 3 if τ3

had entered its NCS. As a result, the stack ordering would no longer be preserved, as can be seen in figure 3.4.

There are several solutions to the run stack ordering problem. The most trivial one would of course be to only
allow new tasks to enter the system when the run stack is empty. No ordering has to be preserved at that point,
and the admission will cause no problems. This approach is overly pessimistic though, and can be improved
upon using some simple logic. Another option would be to walk down the entire run stack to see if the ordering
would still be preserved if the new tasks were to be admitted at this moment in time. This however can be a
very costly operation, as the scheduler overhead would become dependent on the number of tasks on the run
stack. Furthermore, when the check fails, then the next time the run stack ordering must be checked one must
walk down the entire run stack again. This process could be optimized slightly by remembering which task
should at least disappear from the run stack before attempting another check, but clearly this is approach not
desirable in a hard real-time system as well.

To come up with a better approach, we need to examine which task properties making up the run stack or-
dering can actually change as a result of DTA. Consider figure 3.3 displaying an example run stack. The
leftmost number in each box represents the absolute deadline of a task. Clearly this value will not change as a
result of DTA. The middle number represents the relative deadline of a task. Again, this value will not change
as a result of DTA. Finally, as was shown in figure 3.4, the value of the rightmost number representing the
inherited deadline can change as a result of DTA. So to solve the run stack ordering problem, we only need to
deal with the possible changing of inherited deadline values. Observe that the inherited deadline can only lower
as a result of DTA, thus raising the priority level of tasks it can block).

Let Γ1 be the set of tasks that are already entered into the system and Γ2 the set of tasks that want to enter
the system. Recall that new inherited deadline values will be computed for the nested critical sections in both
Γ1 and Γ2 during the feasibility analysis of the combined task set Γ1 ∪ Γ2. Let ∆hidc be the highest inherited
deadline value that would be changed in Γ1, if Γ2 entered the system. ∆hidc will be ∞ if no nested critical
sections will see a drop in its ∆ level.

Theorem 6 (DTA condition). The scheduler can allow DTA without breaking the run stack ordering when the
following condition is met:

∆s ≥ ∆hidc (3.17)

where τs is defined as the top of the run stack.

Proof. The DTA condition will not break the run stack ordering. For the “> case” holds:

• all tasks on the run stack have a ∆ level higher than ∆hidc (due to the run stack ordering),
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• and hence their inherited deadline will not change (due to the definition of ∆hidc).

For the “= case” holds: observe that ∆s can drop as a result of DTA. However, no other task on the run stack
will be affected by such a drop, as their inherited deadline level is strictly higher than ∆s. Since only the task
at the top of the run stack will be affected, the run stack ordering will be preserved.

3.6 Non-preemptable nested critical sections

An additional scheduler feature that might be interesting for application developers is the ability to create
non-preemptable nested critical sections (NPNCS). This could for example be used to reduce the jitter when
accessing resources periodically, or allow to use resources without being interrupted.

3.6.1 Problem

Suppose a task should be programmed to send a continuous, non-interrupted data stream over a radio channel.
When using DMI or EDFI based on transactions, one could simply create a “virtual resource” that is added to
the task with the shorted deadline interval, and to the transaction that should not be preemptable, as proposed
by Jansen[8], p67.

A similar trick could be used when using DMI or EDFI based on nested critical sections3. You could create
a virtual write resource for every NCS that needs to be non-preemptable and add that resource to every other
NCS. Note however that while this approach works fine in theory, the drawbacks will likely be too big to be
useful in practice. We will not discuss the drawbacks in detail, but it is easy to see that this approach will cause
an increase in administrative overhead, especially when dynamic task admission and removal is allowed.

3.6.2 Theory

A different approach to allow for NPNCSs however can be easily constructed within the DMI and EDFI frame-
work. As we will see, this approach will not have the drawbacks mentioned in the previous paragraph. We will
explain how to create a NPNCS under EDFI, but the results will apply to DMI as well.

Suppose that the ith NCS of a task τt must be non-preemptable. Recall that with job τ l
t at the head of the run

stack and τk
f at the head of the ready cue, τk

f preempts τ l
t iff dk

f < dl
t and Dk

f < ∆t,i (see paragraph 3.3). If the
NCS should not be preemptable, we have to make sure that no job at the head of the ready queue can satisfy
the preemption criterion.
The absolute deadline dl

t can not be modified directly in such a way that the preemption criteria are never met,
as it simply depends on Dt and the release time of the job. Modifying Dt is not a good option either, as that
would change the priority of the whole task, instead of just a single NCS. The only variable left with influence
on the preemption criteria is the inherited deadline, ∆t,i in this case. Dropping ∆t,i to a value lower than, or
equal to Df would have the the desired effect, since Df < ∆t,i would never hold. This however would have
a negative impact on performance, as the value for ∆t,i would have to be recalculated every time new task is
placed at the front of the ready queue. This problem can be solved by simply dropping ∆t,i all the way down
to 0. This solution would have no additional impact on the performance of the scheduler. As 0 ≤ Df holds for
any task τf , this inherited deadline level change would result in the desired NPNCS.

To allow for NPNCSs we redefine the inherited deadline level ∆i,j for NCS j of task τi as:

3Observe that under DMI all nested critical sections of the highest priority task are automatically non-preemptable
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Definition 11 (NCS inherited deadline ∆i,j).

∆i,j =

{
0 if NCS j of task τi should be a NPNCS,
min({Di} ∪ {Dr

R|R ∈ φr
j(τi)} ∪ {Dw

R|R ∈ φw
j (τi)}) otherwise (unchanged from definition 3.3)

(3.18)
where φr

j(τi) is the set of resources that are read by τi in NCS j, and φw
j (τi) the set of resources that are written

by τi in NCS j.

The feasibility analysis processes for both DMI and EDFI do not need any adjustments to allow for NPNCSs if
they use this new inherited deadline level definition.

3.6.3 Specification

An application programmer needs a way of specifying the requirement for one or more NPNCSs. We therefore
adjusted the resource specification grammar presented in paragraph 3.2. The change involves an additional
exclamation mark flag ‘!’ that can be added to a NCS if it needs to be non-preemptable. The updated grammar
becomes:

ρlist : float ′{′ Rlist ρlist
′}′ ρlist

∗

Rlist : R R∗

R : ′a′..′z′ | ′A′..′Z ′ | ′!′

Example 1 (Non-preemptable nested critical sections).
According to NPNCS grammar, a valid resource usage description would be “2.0{! A}”, which specifies a
NPNCS in which resource A is acquired for 2.0 units of time4. Another valid construct would be “2.0{A}1.0{!}”,
which specifies a NCS which acquires resource A for 2.0 units of time, followed by a NPNCS which requests a
non-preemptable section for 1.0 unit of time. As can be seen in the last example, it is not mandatory to acquire
a resource in a NPNCS.

3.7 Multi-use resources

In the previous sections we assumed that resources could be read by an infinite number of simultaneous readers,
and could only be written by one task at any given time. However some resources might allow to be written by
more than one task at the same time, or only allow to be read by limited amount of readers simultaneously. We
call such resources multi-use resources, MUR in short. The EDFI and DMI theory can be extended to allow for
such multi-use resources.

3.7.1 Model

Every resource must specify the number of simultaneous readers and writers it allows. The notation Rρ,ω

specifies that resource R can simultaneously be read ρ times, and ω times written. Rρ will be referred to as
the resource’s readcount, while Rω will be referred to as the resource’s writecount. Note that up till now, a
resource R was assumed to be a R∞,1 resource. This new model does nothing more than making the model
that we used up till now slightly more generic5.

4Observe that the resource description “2.0{! A}” will give the same result as “2.0{!}”, as in both cases the inherited deadline level
will be set to 0. However, we do not restrict the resource usage specification to the use of either resources or a “!” flag, as the result can
differ when using multi-use resource support, a theory which will be discussed in section 3.7.

5The extent to which this model is useful has yet to be determined. This paper will present two examples where we think this model
provides an advantage over the existing model. We expect that this model could prove useful in far more real-life situations, which have
yet to be explored. On the other hand this model provides a flexibility that might be unneeded in practice. For example, we do not know
how a R4,5 or R22,3 resource would function in practice, what use it might have or if even if it could be created in the first place.
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As before, readers and writers can not access a resource simultaneously. When a reader acquires a resource,
only other readers (if any) can acquire the same resource. Similarly, when a writer acquires a resource, only
other writers can acquire the same resource. A task is assumed to only acquire a resource once. The reason for
the existence of this assumption will be discussed in paragraph 7.1.2.

Example 2 (MUR usage).
Consider a classical tape device used for storing large amounts of data on tape drives. The seek time of such
devices is typically very large; seek times of several minutes are not rare. Since seek times are so large, we do
not want the read actions of several tasks interfering with each other. While these actions could be coordinated
on a level above the scheduler, this would require effort from the application developer. The MUR model offers
a solution at scheduler level. In this case we could simply model the tape device as T1,1. Multiple readers (and
writers) would now automatically be stopped from interfering with each other by the scheduler.

Another use case is inspired by the Casini-Huygens spacecraft6. This craft carried a single radio device that
could transmit data back to earth over two separate channels. These two channels could be modeled as separate
resources, or the radio could be modeled as a single R0,2 resource. The first approach would imply a fixed
assignment of channels to tasks which might be suboptimal during operation: even if one data channel is still
available, a task can be blocked from sending its data back to earth if its assigned channel is already in use.
The single R0,2 resource approach would not have this problem, as it would always allow two simultaneous
writers.

3.7.2 Specification

An application programmer needs a way of specifying the resource read and writecount. We therefore adjusted
the resource specification grammar presented in paragraph 3.6.3. The change involves an optional section
‘[’ρ,ω‘]’ that can be added to every resource to specify its read and writecount. The updated grammar becomes:

ρlist : float ′{′ Rlist ρlist
′}′ ρlist

∗

Rlist : R (′[′C,C ′]′)? Rlist
∗

R : ′a′..′z′ | ′A′..′Z ′ | ′!′
C : ′inf ′ | integer

The resource usage description “1.0 { R[inf,2] }” would for example specify a resource R that has an infinite
readcount and a writecount of 2. If for a resource R no read and writecount are specified, R∞,1 is assumed.

3.7.3 Sufficient feasibility analysis

The read and write floor definitions presented in paragraph 3.2.1 will have to be adjusted to support MUR. First
of all, observe that when the number of tasks that write resource R is less than or equal to Rω, no blocking will
ever occur on this resource for reading. Similarly, when the number of tasks that read resource R is greater
than Rρ, readers will be blocked over this resource. Previously. readers of a resource would never be blocked
by other readers of the same resource and writers would always be blocked by readers as well as writers.

This results in new definitions for the read floor Dr
R and write floor Dw

R of a resource R :

Definition 12 (Read floor Dr
Rρ,ω

).

Dr
Rρ,ω

=

{
min({Di|τi ∈ γw(R)} ∪ {∞}) if µr(R) ≤ ρ,
min({Di|τi ∈ γw+r(R)} ∪ {∞}) otherwise

(3.19)

where µr(R) is the number of readers of R.

6Cassini-Huygens was an international collaboration between NASA, ESA and the Italian Space agency. The Cassini spacecraft’s
mission was to explore the Saturn system of rings and moons from orbit, while the Huygens Probe was to dive into Titan’s thick atmosphere.
See http://saturn.jpl.nasa.gov/overview/index.cfm for details.
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Definition 13 (Write floor Dw
Rρ,ω

).

Dw
Rρ,ω

=

{
min({Di|τi ∈ γr(R)} ∪ {∞}) if µw(R) ≤ ω,
min({Di|τi ∈ γr+w(R)} ∪ {∞}) otherwise

(3.20)

where µw(R) is the number writers of R.

The inherited deadline calculation as described in paragraph 3.2.1 can be left unmodified if used with these
new resource floor definitions. The feasibility analysis processes presented in section 3.4 can also be left
unmodified, as these read and write floor definitions are worst-case conditions. Ie. when the number of readers
of Rρ.ω exceeds ρ or the number of writers exceeds ω, all readers and writers are taken into account. Only
when the number of simultaneous readers or writers are less or equal than ρ and ω respectively, a resource is
omitted from the feasibility analysis.

Example 3 (Sufficient condition resource floors).
Consider the example task set shown in table 3.2 along with table 3.3 showing the resource definitions. Observe
that the number of writers of A is greater than its writecount. This means that the write floor of A, Dw

A, will be
set to 4, with or without MUR. Similarly, Aρ equals∞ which is greater than the number of tasks that read A
(only τ3). This means that Dr

A will be set to 4, with or without MUR.
Things get different when looking at resources B and C. Bω is specified as being 2 and the tasks that write B
are τ2 and τ4. Since the number of tasks that write resource B does not exceed Bω and no task reads B, Dw

B

will be set to∞. Without MUR Dw
B would have been set to 4 (from τ2).

Resource C is read by τ3 and τ4 and no task writes C. As Cρ equals 1, Dr
C will be set to 5 (from τ3), where it

would have been set to∞ without MUR.

Γ D T C Resources
τ1 4 5 1 0.1{A}
τ2 4 6 1 0.5{A B}
τ3 5 6 1 1.0{a c}
τ4 6 9 3 2.0{A} 1.0{B c}}

Table 3.2: MUR example task set

Resource ρ ω
A ∞ 2
B ∞ 2
C 1 1

Table 3.3: MUR example resource specifications

3.7.4 Necessary feasibility analysis

The resource floor definitions presented in the previous paragraph are too pessimistic for several common
MUR applications. Consider for example three tasks that all have one NCS with the following specification:
“1.0 { A[inf,2] B }”. No task will be able preempt another task that has entered its NCS, even though resource
A has a writecount of 2. This is caused by the fact that every NCS also needs to acquire resource B for writing,
which has a writecount of only 1. The sufficient feasibility analysis will assign a write floor to A equal to the
shortest deadline of the tasks using it, while in practice is could be set to∞.

The solution to finding the optimal resource floors is a NP-complete problem, as it involves generating all
possible NCS stack orderings and checking which stacks are actually valid. The worst case blocking that could
actually occur at run-time can then be determined by looking at the nested critical sections at the top of the
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valid stacks. We propose the following “Optimal resource floors” algorithm to determine the optimal resource
floor values:

Algorithm Optimal resource floors
1. todoList← sortDesceding(tasks);
2. for (R ∈ resourceList){Dr

R ←∞;Dw
R ←∞ }

3. while (non empty(todoList) {
4. t← shift(todoList)
5. ncsStacks← generateStacks(t, todoList)
6. for (s ∈ ncsStacks) {
7. if (isV alid(s)) {
8. for (Rρ,ω ∈ resourceList) {
9. (τi, ncsj)← top(s)
10. if ((Di < Dr

R) ∧ (curReaders(s,R) = ρ)) then Dr
R ← Di

11. if ((Di < Dw
R) ∧ (curWriters(s,R) = ω)) then Dw

R ← Di

12. }
13. }
14. }
15. }

The generateStacks() function is the hardest part of this algorithm to implement. It must generate all NCS
stacks with task t placed at the bottom, and using the remaining tasks in the todoList to construct all possible
combinations of NCS stacks on top of that. The todoList is sorted so generateStacks() can easily make
sure that no tasks with longer relative deadline are stacked upon a task with a shorter or equally long relative
deadline; the stack ordering still needs to be preserved.
The isV alid() function verifies that a given NCS stack could actually be constructed at runtime. As
generateStacks() makes sure the relative deadline ordering of the items on the stack is sound, isV alid()
only has to verify that resources on the stack are used properly. To be able to do this, isV alid() has to know
how resource floors and inherited deadline values are calculated at run-time. This process is described in para-
graph 3.7.5.
When a stack has been determined to be valid, the algorithm checks whether a resource acquired by the NCS
at the top of the stack is maxed out in terms of simultaneous readers or writers. If that is the case then the read
or write floor of that resource is set to the deadline of the task belonging to that NCS. This will only be done if
the new value is smaller than any previous found value.
When the algorithm completes, all resources will have been assigned their worst case read and write floors that
can actually occur at run-time. Using these values during the feasibility analysis will definitively determine the
feasibility of a task set, this in contrast to the sufficient condition described in the previous paragraph.

3.7.5 Online operation

The online operational changes to support for multi-use resources are rather small. The most important change
is the fact that the value of the resource floors, and thus the value of the inherited deadline of a NCS, now
depends on the availability of the free read or write “units” of those resources. In a resource’s read floor only
readers are taken into account when the current number of readers is equal to the resource’s readcount. By
“current” the moment in time is meant when the inherited deadline value of a NCS is being calculated, that is
on entering a NCS. Similarly for the write floor only writers are taken into account when the current number of
writers is equal to the writecount7.

The following read and write floor definitions, D′r
R and D′w

R, take the current number of readers and writers
into account:

7Observe that the current number of readers or writers of a resource can not exceed the resource’s readcount or writecount respectively;
there can’t be more read or write units of a resource handed out than those that are available.
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Definition 14 (Online read floor D′r
Rρ,ω

).

D′r
Rρ,ω

=

{
min({Di|τi ∈ γw+r(R)} ∪ {∞}) if (µr(R) > ρ) ∧ (νr(R) = ρ),
min({Di|τi ∈ γw(R)} ∪ {∞}) otherwise

(3.21)

where µr(R) is the number of readers of R and νr(R) is the current number of readers of R.

Definition 15 (Online write floor D′w
Rρ,ω

).

D′w
Rρ,ω

=

{
min({Di|τi ∈ γr+w(R)} ∪ {∞}) if (µw(R) > ω) ∧ (νw(R) = ω),
min({Di|τi ∈ γr(R)} ∪ {∞}) otherwise

(3.22)

where µw(R) is the number of writers of R and νw(R) is the current number of writers of R.

Observe that both cases in the read and write floor definitions can be pre-calculated offline. Given these def-
initions we can redefine the definition for the inherited deadline level to make its value depend on the online
resource read and write floors:

Definition 16 (NCS inherited deadline ∆i,j).

∆i,j = min({Di} ∪ {D′r
R|R ∈ φr

j(τi)} ∪ {D′w
R|R ∈ φw

j (τi)}) (3.23)

These new definitions imply that the resource usage has to be tracked at run-time, which was not needed previ-
ously. While the run-time changes to allow for MUR are small and easy to implement, they will have a negative
impact on the scheduler performance. In chapter 6 a test will be described that measures the performance impact
imposed by MUR on the scheduler.
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Chapter 4

Design

4.1 Platform determination

A good number of real-time operating systems exist today, such as VxWorks1, eCos2, QNX3 and various Linux
based systems. The Linux based systems are generally availble under the GPL4 license, which makes them
suitable candidates for implementing and testing new scheduling methods.
Two main competitors (if you could call them that) based on Linux exist today, namely RT-Linux5 and RTAI6.
RT-Linux is a hard real-time kernel with a minimalistic approach. It does not include the numerous features
that commercial operating systems such as VxWorks carry. RTAI (Real-Time Application Interface), originally
based on RT-Linux, is a hard real-time extension to the Linux kernel. It incorporates a whole array of real-time
features and is generally more complex than RT-Linux.
Other Linux based real-time operating systems include RedIce-Linux, Linux/RT, ART Linux, KURT and Lin-
ux/RK. They all have a different goal and/or means to reach that goal.
After an evaluation of the available real-time operating systems, RT-Linux has been chosen as the testbed our
the DMI and EDFI implementations. Its licensing, minimalistic approach, and its hard real-time properties
make it an ideal platform for this purpose.

4.2 Real-Time Linux workings

The RT-Linux kernel is a small, hard real-time kernel separate from the standard Linux kernel. Figure 4.1 gives
an overview of the RT-Linux architecture. It contains a scheduler which schedules the real-time tasks. Real-time
tasks are generally created in normal Linux kernel modules, and are thus running in kernel space. Interestingly,
the scheduler treats the Linux kernel as a real-time task as well. The Linux kernel is artificially made a real-time
task by setting its period to infinity and giving it the the lowest priority possible. This effectively means that
the Linux kernel only runs when no real-time activity takes place. To accomplish this, the RT-Linux kernel
requires a modification to the Linux kernel interrupt handling routines and the interrupt enabling/disabling
macros. Whenever an interrupt is raised, it is trapped by the RT-Linux kernel. If the interrupt is related to
any real-time activity, the RT-Linux kernel will handle it. Non real-time related interrupts are blocked until no
real-time activity takes place. At this point, the Linux kernel will be executed and the queued interrupts can be
handled.

1http://windriver.com/
2http://www.redhat.com
3http://www.qnx.com/
4http://www.fsf.org/licensing/licenses/gpl.html
5http://www.rtlinux-gpl.org/
6http://www.rtai.org/
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Figure 4.1: Real-Time Linux architecture

This “mini kernel” approach has some important advantages, such as a very low latency and reduced complex-
ity. On the other hand it presents some drawbacks, such as faults in real-time tasks being able to bring down
the kernel (since they run in kernel space) and the inability to use the device drivers that come with the Linux
kernel. A detailed technical overview of the workings of RT-Linux has been given by Yodaiken[20].

4.2.1 Real-Time Linux scheduler

RT-Linux contains by default a simple, priority based scheduler. It does not support resource scheduling, and
as such does not have any priority inversion or chained blocking prevention mechanisms. The task model it
uses is very simple as well, only supporting the periodic execution of tasks. Tasks do not have any deadlines,
and are just assumed to be finished before the next period starts. A deadline overrun detection mechanism is
therefore not existent either.

The real-time tasks, in varying states, are placed in a single task list by the scheduler. An example task list
is shown in figure 4.2. Each task can be in one of the RUNNING, RELEASED, WAITING or PREEMPTED
states at any moment in time when the default scheduling algorithm is used. These states denote:

• RUNNING: the task is currently executing

• RELEASED: the task is ready to run on the processor (its periodic release timer fired)

• WAITING: the task is waiting until its periodic release timer fires again

• PREEMPTED: the task’s execution is interrupted by a higher priority task

Figure 4.2: RT-Linux task list example

As can be seen in figure 4.2, the first task in the list is the pseudo real-time ’Linux kernel’ task. As this
task is always present, it will be automatically be scheduled when there are no real-time tasks in any of the
RELEASED, PREEMPTED or RUNNING states.
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The rationale behind the simplicity of the scheduler is that most real-time projects require a very distinct set of
features from the scheduler. As it is impossible to suit them all, the default scheduler is left simple. This makes
the scheduler easy to adapt to the specific needs of the projects that use it.
The opinion of the principal author of RT-Linux, V. Yodaiken, might have had some influence as well in keeping
several complex mechanisms out of the default scheduler. Yodaiken is for example a strong opponent of using
priority inheritance mechanisms in a real-time scheduler to ensure mutual exclusion, one of reasons being “the
significant amount of complexity that is added to the operating system”[21]. We do not share this view and
will show that adding inheritance (as used by DMI and EDFI) will add very little additional complexity to the
system.

4.3 DMI and EDFI in RT-Linux

To fit the DMI and EDFI schedulers into RT-Linux, we need to adapt the scheduler organisation presented in
paragraph 3.3 to work in the RT-Linux framework. We can not copy the organisation verbatim, as it is not
optimal in terms of implementation performance and it does not, obviously, deal with the fact that there should
always be a Linux task scheduled when there are no real-time tasks waiting to be executed.

Figure 4.3: DMI / EDFI task list organisation

The design that has been adopted for both DMI and EDFI in RT-Linux is shown in figure 4.3. The run stack and
the ready queue are still separate logical entities, but physically they are concatenated using a double linked list
structure. Starting at the Linux kernel task, the task priorities increase all the way up to the task pointed at by
the rst pointer. The tasks in the ready queue on the other hand have a decreasing priority from the left to the
right7.

Each task has to maintain a pointer to its successor called next, and a pointer to its predecessor called prev
given the linked list structure of the task list. A run stack top pointer, or rst in short, is used to keep track of
the top of the run stack.

A task can be in any of the following states: RELEASED, WAITING, PREEMPTED RUNNING, INITIALIZ-
ING, DELETING, AWAITING DTA and DEAD. The first four states were already depicted in figure 3.1, and
should need no further explanation. The other remaining four states are:

• INITIALIZING: the task is in the process of initializing itself; this is typically done in idle time. It is not
being scheduled periodically yet. See paragraph 4.3.6 for details.

• DELETING: the task is in the process of being deleted; this is typically done in idle time. See paragraph
4.3.6 for details.

• AWAITING DTA: the task is initialized and is waiting for the DTA condition to become valid. When this
happens, the task is released into the system and will be scheduled periodically8.

7The only difference between the DMI design and the EDFI design is the way in which the ready queue is ordered; see section 3.3 for
details.

8Tasks in the AWAITING DTA state are not placed in the ready queue to keep the normal scheduling decision as fast as possible. If
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• DEAD: the task has missed a deadline and is excluded from execution. See paragraph 4.3.4 for details.

A state diagram showing the states a task can be in, as well as the possible transitions between those states is
depicted in figure 4.4.

Figure 4.4: Task states and transitions

4.3.1 Task preemption

The rst pointer allows the scheduler to make a preemption decision very quickly. To make this decision, only
the task at the top of the run stack and the task at the front of the ready queue are needed. The top of the run
stack can instantly be accessed using the rst pointer, and the task at the front of the ready queue can simply
be reached by dereferencing the next pointer of the task pointed at by rst.

4.3.2 Task completion

Whenever a task completes its execution, it is moved to the waiting queue. This queue has no ordering at all,
and as such, tasks can simply be added to the front of the list. This is obviously an O(1) complex operation.

Before the task is moved to the waiting queue, the rst pointer must be set to the prev pointer of the completed
task. This ensures that the scheduler will use the correct tasks in the preemption test when it makes the next
scheduling decision. If the task at the front of the ready queue is not selected for execution, the scheduler will
notice that the rst pointer has changed, and will wake up the preempted task that is now at the top of the run
stack.

Observe that this mechanism will automatically ensure that the Linux kernel when executed if the run stack and
the ready queue are empty.

tasks awaiting DTA would be placed in the ready queue, then the scheduler can’t simply follow the next pointer of the task pointed at by
rst anymore to make a scheduling decision; the task pointed at might not be eligible to run if it is awaiting DTA. In a worst case scenario
the whole ready queue has to be traversed to look for a ready task that can be used to base a scheduling decision on.
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4.3.3 Task releasing

Tasks have to be released periodically, which involves moving them from the waiting queue into the ready
queue. The ready queue is an ordered list, and inserting the released task into the list must not invalidate this
ordering. The linked list structure will make this operation O(n) complex, where n is the number of tasks in
the ready queue.

Inserting an element into an ordered list can be done in O(log(n)) time, so the proposed design with its O(n)
complexity is not optimal. However, if one wants to achieve O(log(n)) complexity, the ready queue must be a
continuous array in memory when it is going to be implemented. Since an array is a rigid structure, we deem
it unfit to for use in the proposed scheduler architecture. The benefits of the reduced algorithmic complexity
do not outweigh the drawbacks of the increased resource usage and the array management overhead, such as
making space for new tasks when the array is full and preventing gaps from occurring.

4.3.4 Missing deadlines

The solution to the question of what action to undertake when a job exceeds its deadline is a hard one. Should
the whole system stop? Should the task be removed from the system and should the system try to continue as
best as it can? Or even something else? As the right answer might be different for different types of task sets, or
might not even exist at all, we have chosen for a solution that seems “good enough“ for most cases. Note that
“good enough“ is quite subjective and could use some more insight, especially when the design is used outside
the confined walls of the laboratory.

Whenever a task exceeds its deadline, it will be removed from the run stack and will be flagged DEAD. It will
then be moved into the waiting queue, where it will stay until the application designer removes it from the
system. It will then leave the system via the DELETING state as depicted in figure 4.4.

Note that a problem arises when a task that exceeds its deadline holds any resources. It will need to be signalled
to release its resources immediately. Only after all acquired resources are released the task can be flagged
DEAD. A proper implementation will only send such a signal if needed, as the scheduler knows when any
resources are actually acquired.

4.3.5 Nested critical sections

Each NCS is modeled as a separate entity which holds several properties. These properties include:

• an inherited deadline,

• the set of resources that are read and/or written,

• the amount of time the resources are acquired,

• a pointer to a possible embedded NCS called the child NCS, and

• a pointer to a possible successive NCS which we will refer to as the next NCS.

An example NCS entity diagram is shown in figure 4.5. This particular diagram shows the NCS structure for the
resource description: “2.0{radio}3.0{ram1.0{DISK0.5{NETWORK}}1.2{flash}}1.0{RADIO}”. Note
that not all NCS properties are depicted in the figure.

Given the structure of the nested critical sections, every real-time task only has to maintain a single pointer to
the first NCS entity it will access. Using that NCS as a starting point (the ’radio’ entity in the example shown
in figure 4.5) the scheduler is able to traverse the entire tree via the various “c”hild and “n”ext pointers. This
allows the application designer to simply tell the scheduler to enter the next NCS, or leave the current NCS,
without the need to explicitly state which NCS to enter of leave: the scheduler knows the NCS structure and
can figure it out on its own.
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Figure 4.5: NCS structure example

4.3.6 Idle time

Several processes, such as the feasibility analysis, task initialisation and task deletion must be executed without
interfering with the execution of real-time tasks. This can be achieved by:

• reserving a fixed amount of processing time (for example by creating a virtual real-time task) to execute
the non real-time processes in

• executing the non real-time tasks in idle time9

The former will have a negative impact on scheduling performance, and the feasibility analysis could mark
otherwise feasible task sets as being infeasible because of the reserved processing time. The latter solution
is preferable, as it does not have these problems. However, depending on the implementation it might not be
possible to execute non real-time tasks without any interference with the real-time task execution.

Fortunately, given the architecture of RT-Linux and the scheduler design depicted in figure 4.3 it is quite easy
to execute tasks in idle time. In fact, there are two distinct ways to execute non real-time work:

1. The RT-Linux architecture allows the Linux kernel to be handled and scheduled as if it is normal real-
time task. The DMI/EDFI design makes sure the Linux kernel is only scheduled when the run stack and
the ready queue are empty (by giving it by definition the lowest priority). Ergo, the Linux kernel is only
executed in idle time. By executing the feasibility analysis process from within the Linux kernel it is
automatically executed in idle time.

2. Observe that the bottom of the run stack is the task directly following the Linux kernel task (see figure
4.3). Similarly to the Linux kernel, initialising tasks or tasks that are in the process of begin deleted are
also given by definition the lowest priority possible. They are then placed directly after the Linux kernel
as is depicted in figure 4.6. This will ensure that they are only executed in idle time.

A task that is executing in idle time, the Linux kernel included, will immediately be preempted by the scheduler
whenever a real-time task is placed in the ready queue. The newly arrived task will by definition have a higher
priority, and thus preempt the task that is executing in idle time.

9Idle time occurs where there are no real-time tasks awaiting execution
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Figure 4.6: Example of tasks executing in idle time
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Chapter 5

Implementation

In this chapter we will describe the implementation of the DMI and EDFI schedulers and the accompanying
admission control mechanisms in RT-Linux. We will discuss most of the implementation on a relatively high
level, as the source code details are of less interest to this paper. Several utilities, listed in Appendix B, have
been created during the implementation process to ease the development of the schedulers.

5.1 Application Programming Interface

Real-time tasks in RT-Linux are modelled as POSIX1 threads, commonly known as pthreads. Conveniently,
most of the normal POSIX thread APIs can be applied to them. RT-Linux also implements the minimal POSIX-
RT standard. This standard includes the specification of POSIX timer and signaling interfaces. Our implemen-
tation tried to keep these interfaces working as expected, but this hasn’t been tested extensively.

RT-Linux has expanded the POSIX-RT interface with new functions to create and control real-time tasks.
Similarly, we modified some of these additions and created several new ones ourselves as well. The most
important additions are shown below:

• rtl task create(): construct a new real-time task

• rtl admctrl admit if feasible(): admit a set of tasks if the addition results in a feasible sys-
tem

• rtl task free(): frees all resources held by a task

• pthread ncs enter(): enter the next nested critical section

• pthread ncs leave(): leave the current nested critical section

Obviously these are not the only functions we had to add to the kernel. Quite a number of non-public functions
were needed to make these new interfaces work. The rather complex mechanisms behind the seemingly simple
rtl task create() and rtl admctrl admit if feasible() interfaces will be discussed in para-
graph 5.3 and 5.4 respectively. The operation of the other new functions will be briefly addressed in this section
as well.

Appendix A gives a simple example of how these interfaces can be used to create a real-time task, how to insert
the task into the system if the feasibility analysis allows it and finally how to remove it from the system again.
The source code with its included comments should speak for itself.

1POSIX, short for Portable Operating System Interface, is developed by the Institute for Electrical and Electronic Engineering. Its
purpose is to define the interface that a conforming operation system should offer to applications.
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5.2 Data structures

Some of the most important data structures are (partially) displayed in figure 5.1 that can be found at the end
of this chapter2. These data structures give some idea of how the properties of tasks, nested critical sections,
resources and the scheduler are stored and related in our implementation. Throughout this chapter we will
explain and refer to these data structures.

5.3 Task creation

A new task, or to be more precise a new rtl task struct structure,
can be created using the rtl task create() function. This function accepts several arguments, the most
important being:

• period: the task’s period (in ns)

• deadline: the task’s relative deadline (in ns)

• load: the task’s load (in ns)

• resouce usage: the task’s resource usage description

The first three variables should speak for themselves. All arguments are of the type hrtime t, which is basi-
cally a C long long. The values must be specified in nanoseconds, as that are the time units the scheduler
works with.
The resource usage parameter is a simple character string. The full resource specification grammar pre-
sented in paragraph 3.7.2 can be used to describe the task’s resource needs. A valid, rather exotic resource
string could for example look like: “1000{ ! } 500 { RADIO[0,2] network}”. Strings not conforming to the
grammar will be refused. Strings that do conform to the grammar are automatically transformed into a NCS
structure (see paragraph 4.3.5) using the internal rtl admctrl parse ncs() function. This structure is
then stored in the ncs member of the newly created rtl task struct, ready to be used by the feasibility
analysis algorithm.

An interesting detail is the fact that resources are reference counted. All currently used resources are stored
in the scheduler’s rtl resources list. The ref count member of a rtl resource struct denotes
the number of nested critical sections that use that resource. The reference count is automatically incremented
when the rtl admctrl parse ncs() function determines that a resource is being parsed that is already
present in the system. A new rtl resource struct with an initial reference count of 1 is created when a
new resource is encountered.
When a task is deleted from the system, all its nested critical sections will be destroyed. The resources refer-
enced by those nested critical sections will automatically have their reference count decremented. When the
reference count reaches 0, the resource is destroyed as well.

5.4 Admission control

The complexity of the admission control mechanism is hidden behind the simple
rtl admctrl admit if feasible() function. We will only briefly discuss the overall workings of
this function, as the rather awful details of the implementation are outside the scope of this paper3.

2Note that not all variables are shown in figure 5.1. For example the rtl resource struct structure will contain additional
member variables when MUR support is enabled, such as the current number of readers and writers.

3One of these details for example has to do with the Baruah bound calculation used in the EDFI feasibility analysis. Because floating
point calculations are not by definition supported by the kernel, the value of equation 3.12 had to be calculated using fixed point math.
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When rtl admctrl admit if feasible() is called with a list of new tasks (rtl task struct’s),
the first thing this function will do is combining the resources used by the new tasks with those already present
in the system. Then it will recalculate all resource floors of all resources. If multi-use resources are supported,
the application designer can specify if the sufficient or necessary resource floor conditions should be used.
When the resource floor calculation is completed, the inherited deadline value of every NCS (for both the new
ones and for those already present in the system) will be (re)calculated. Then with these values at hand, the
feasibility analysis for DMI or EDFI can be performed. Based on the kernel configuration the correct algorithm
is automatically executed. When the combined task set has been found to be feasibly, a pthread is created
and assigned to every rtl task struct. This new pthread is picked up by the scheduler and handled as
described in section 4.3.
The hard part of implementing the admission control mechanism was making it function correctly while the
system was currently executing. The current implementation fully supports online operation.

5.5 NCS usage

Only two functions are needed to traverse the NCS structure:

• pthread ncs enter(), and

• pthread ncs leave()

Whenever a task makes a call to pthread ncs enter() the scheduler will automatically enter the next
NCS in line. This can be either a “child” NCS or a “next” NCS (see paragraph 4.3.5 and figure 4.5). The
currently entered NCS is left again when a call is made to pthread ncs leave(). The scheduler will de-
termine itself which “parent” NCS to return to. If no parent NCS exists, the task will set the inherited deadline
level to the relative deadline of the task itself (see figure 5.2). In paragraph 5.6.2 we will discuss this process in
more detail.
The application designer does not have to maintain any administration to traverse the nested critical sections of a
task. He should only make sure that the call pattern of the pthread ncs enter() and
pthread leave enter() functions follows the structure of the resource usage description initially passed
to rtl task create(). The scheduler will report an error if this structure is not followed.

5.6 Performance considerations

5.6.1 Signaling

Release and deadline timers are all implemented in software, ie. they are not interrupt driven. Every time the
scheduler is executed, which could either be caused by the periodic timer interrupt or by a direct call to the
scheduler due to a state change, the following timer related events are handled:

1. If the task at the top of the run stack is not the Linux kernel, the task is checked for a deadline overrun.
Ie. the current time should be “less” than the task’s release time + relative deadline.

2. Every task in the waiting queue is checked to see if it should be released.

The first event is obviously an O(1) operation, while the latter is O(n), with n being the number of tasks in
the waiting queue. As RT-Linux runs on “standard” hardware such as x86 and PowerPC systems, there are no
dedicated hardware timers available which could simplify and/or speed up signaling.

Furthermore, since all task properties are specified in nanoseconds (see paragraph 5.3), special care had to be taken to prevent integer
calculation overruns. The admission control mechanism is full of such pesky details.
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5.6.2 NCS traversal

During the implementation we found that the NCS structure presented in paragraph 4.3.5 could not be traversed
easily. Observe that the presented structure only allows a depth first search to find which NCS is the next to
enter on a pthread ncs enter() call, or to which NCS to return after on a pthread ncs leave()
call. Adding an “entered” flag for example to every NCS entity to remember which NCSs have already been
visited would be a suboptimal solution: whenever a traversal of the complete structure has been completed the
flags would have to be reset again. This is an O(n) operation, where n is the number of NCS entities.

Our solution involves adding additional enter (green) and leave (red) pointers to each NCS entity as
shown in figure 5.2. These pointers are already created during the rtl task create() call (see para-
graph 5.3), so no run-time overhead is added. This new structure allows for a O(1) traversal of the NCS
structure: whenever a task enters a NCS, the scheduler will store the enter pointer of that NCS. The next
time a pthread ncs enter() call is made, the scheduler will simply follow the stored enter pointer to
enter the proper NCS. Whenever a pthread ncs leave() call is made, the scheduler will simply follow
the leave pointer of the currently entered NCS.

5.6.3 Avoiding overhead peaks

Recall that the specified load for each task (and NCS) is a worst case value. This value is constructed based on
the actual computing power that the task needs, the scheduling overhead and various other aspects. This value
is then used during the feasibility analysis process.

Our implementation directly influences the scheduling overhead and we should therefore make sure that its
behavior is deterministic (within bounds) and that it does not behave too erratic. Ie. the worst case behavior
should not include high “peaks”. Overhead peaks generally occur when changes are made to the system, such
as the admission or removal of tasks. To prevent overhead peaks our implementation will not apply every
change immediately.
For example, the NCS inherited deadline values of tasks that are already in system are recalculated during
the admission control process. The changed values will be flagged “dirty” (hence the flags member of the
ncs resources struct shown in figure 5.1) and will not be adopted immediately when the DTA condition
holds. Instead the change is applied the next time the NCS is entered.
Exactly the same holds for the adoption of recalculated online read and writefloors of resources when MUR
support is enabled (see paragraph 3.7.5).

5.6.4 Latency over overhead

When tasks are removed from the system, the inherited deadlines of nested critical sections belonging to the
tasks still in the system might be allowed to increase again. Our implementation however does not recalculate
the resource floors and inherited deadline levels on task removal, as it is not strictly needed.
Observe that the remaining tasks will still form a feasible task set and jobs will still meet their deadlines. By not
recalculating the inherited deadline levels we prevent additional overhead on the scheduler to occur. Whenever
new tasks enter the system, the feasibility analysis will have recalculated all values which will then be gradually
be adopted in the system (see paragraph 5.4 and 5.6.3).
The drawback of this approach is that tasks could be denied to run at a particular time, while they would have
been allowed to run using the recalculated inherited deadline levels. This means that some tasks could have a
latency that is higher than strictly needed.

5.6.5 Compiler based optimizations

During the development of our scheduler several experimental compiler based optimizations were added to
the default RT-Linux scheduler. These optimizations included branch prediction improvements for P6 family
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systems and the use of the GCC compiler specific macros such as likely/unlikely. These macros can be
used to inform the compiler if a conditional statement is likely to be true or not.

Figure 5.3 gives a simple example of how such macros could be used in practice. This particular example code
is derived from our scheduler code. It checks if the task at the top of the run stack has a deadline timer set, and
if so, if it has exceeded its deadline. As every task except the Linux task will have a deadline timer set, the first
condition will likely be true. The compiler is informed of this fact using the likely macro. For the second
condition that checks for a deadline overrun, the compiler will be informed that this condition is unlikely
to be true.

Our implementation does not use these compiler based optimizations at the moment, as they are still marked
“experimental”. Furthermore they do not attribute to code readability, which would be impractical when de-
bugging our implementation. While outside the scope of this paper, experimenting with these new compiler
based optimizations might prove interesting nonetheless.
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struct rtl_task_struct
{

hrtime_t period; /* the task period */
hrtime_t deadline; /* the task deadline (relative) */
hrtime_t load; /* the worse case task load */
struct rtl_ncs_struct *ncs; /* list of NCSs belonging to this task */
pthread_t pthread; /* the pthread assigned to this task when it is admitted */
/* ... snip ... */

}

struct rtl_resource_struct
{

char *name; /* the resource name */
hrtime_t read_floor; /* the resource read floor */
hrtime_t write_floor; /* the resource write floor */
int ref_count; /* the number of NCSs referencing this resource */
/* ... snip ... */

}

struct rtl_ncs_struct
{

struct rtl_ncs_resource_struct *resources; /* the list of resources this NCS uses */
hrtime_t length; /* the lenght of the NCS */
hrtime_t inherited_deadline; /* the inherited deadline of the NCS*/
struct rtl_ncs_struct *child; /* a pointer to a possible embedded NCS */
struct rtl_ncs_struct *next; /* a pointer to a successor of this NCS */
/* ... snip ... */

}

struct rtl_ncs_resource_struct
{

struct rtl_resource_struct *resource; /* the resource that is acquired */
char *flags; /* resource usage flags (eg. if a resource is read or written) */
struct rtl_ncs_resource_struct *next; /* the next resource in the list */

}

struct rtl_thread_struct
{

hrtime_t resume_time; /* the time of the last period start */
hrtime_t inherited_deadline; /* the current inherited deadline level */
struct rtl_task_struct* task; /* the task belonging to this thread */
struct rtl_ncs_struct* ncs_cur; /* the currently entered ncs */
struct rtl_ncs_struct* ncs_enter; /* the ncs to enter on the next pthread_ncs_enter() call */
struct rtl_thread_struct next; /* a pointer to a possible next thread */
struct rtl_thread_struct prev; /* a pointer to a possible previous thread */
/* ... snip ... */

}
#define pthread_t rtl_thread_struct* /* a pthread is really just a rtl_thread_struct */

struct rtl_sched_cpu_struct /* the scheduler state belonging to a specific CPU */
{

struct rtl_thread_struct *rtl_current; /* the currently running task */
struct rtl_thread_struct rtl_linux_task; /* the linux task */
struct rtl_thread_struct *run_stack; /* task list containing: [linux task][run stack][ready queue] */
struct rtl_thread_struct *run_stack_top; /* the top of the preemption stack */
struct rtl_thread_struct *waiting_queue; /* the waiting queue :-) */
struct rtl_resource_struct *resources; /* the list of used resources */
/* ... snip ... */

}

Figure 5.1: Data structure overview
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Figure 5.2: Performance optimized NCS structure

if (likely(test_bit(RTL_THREAD_DEADLINETIMERARMED, &sched->run_stack_top->threadflags)))
{

if (unlikely(now >= sched->run_stack_top->resume_time + sched->run_stack_top->deadline))
{

/* handle deadline overrun */
}

}

Figure 5.3: Compiler based optimizations
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Chapter 6

Scheduler analysis

The scheduler analysis process consists of several areas. First there is the validation process, which is discussed
in section 6.1. This involves verifying that the scheduler actually makes the correct scheduling decisions.
Then there is the process of determining the scheduler performance, which in itself consists of several impor-
tant aspects. Determining which parts of the code actually contribute to the scheduler overhead is discussed in
paragraph 6.2.1. A way to perform the various performance measurements efficiently is discussed in paragraph
6.2.2. Important is that the measurements themselves should not influence the results in an unacceptable man-
ner. The system configuration is described in paragraph 6.2.3, as the performance of the scheduler depends on
the system that is executing the tests.
Section 6.3 will finally present the results of measurements that have been conducted. Questions such as which
test sets were used to measure the various scheduler characteristics1, how were the tests executed, what were
the expected outcomes and did the actual results conform to the expectations are discussed in this section.

6.1 Validation

To debug, verify and visualize the functioning of the scheduler, a tool called Scheduler Insight has been devel-
oped. This tool is capable of retrieving scheduling data from a previously stored scheduling logfile or acquiring
it directly from a running real-time scheduler using a FIFO2. The scheduling information can be saved to a file
and/or displayed graphically.

To validate the proper functioning of the scheduler a number of task sets were constructed. For each task set the
resource floor calculations, inherited deadline calculations and feasibility analysis were performed manually
and by our implementation. The results were then compared to verify their correctness. Online operational
correctness was verified by executing several task sets and then examining the generated scheduler decisions
using Scheduler Insight3. While these tests can never prove that our implementation is fully correct, we believe
that, given the extensive testing that was performed, it gives a good indication about the implementation’s
overall quality.

An example that was used to verify the correctness of the scheduler is shown in figure 6.1. This particular
example shows an executed DMI schedule for the task set shown in table 6.1. The tasks are sorted by their

1While we could solely construct test sets that measure a specific scheduler characteristic, we should note that it is important that the
test sets are not too far away from “real world” use-cases. Measuring the overhead generated by thousands of tasks consisting of millions of
nested critical sections might be interesting scientifically speaking, but the results would only be marginally useful when trying to improve
the scheduler’s design and/or implementation.

2A FIFO is a shared memory buffer using a first in, first out policy that can be accessed as a character device from kernelspace as well
as userspace. This mechanism is provided by RT-Linux.

3The set of test applications that was created to test the behavior of the schedulers under various conditions is shorty discussed in
paragraph B.3. This test suite can be used to test admission control, (dynamic) task admission and deletion, deadline overrun and NCS
usage (including NPNCS and MUR support) behavior, amongst other things.
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Γ D T C Resources
τ1 400 500 100 90{ radio FLASHROM }
τ2 500 800 100 80{ radio 20{ FLASHROM 10{ NETWORK }}}
τ3 600 900 200 20{ flashrom } 170{ NETWORK 130{ flashrom }}

Table 6.1: Scheduler Insight example task set (values in milliseconds)

priority. Job execution is represented by blue horizontal bars. The figure also shows the execution of a forth
task, shown in dark red, which is the Linux kernel that is executed in idle time only. The large green arrows
pointing up denote the firing of task release timers, while the large red down-pointing arrows denote absolute
task deadlines.

A colored line is drawn below the execution diagram for each task. This line represents the inherited deadline
level of that task. When the line is black and flat, no deadline level is inherited. Whenever a task enters a nested
critical section, the inherited deadline level might drop. This is represented by a dropping inherited deadline
level line. When a nested critical section is left, the inherited deadline level might increase again. This is
denoted by the line moving up. The various nested critical sections of a task are differentiated using different
colors. The size of the change is visualized by the amount the line moves up or down, while the actual value of
the inherited deadline is represented by a small arrow in the task execution bar using a color matching the NCS
it belongs to.

Figure 6.1: Scheduler Insight diagnostic tool

Take for example task τ1 from table 6.1, which uses one NCS. We can see in figure 6.1 around t = 22780ms
that τ1 enters the NCS immediately after its execution starts. The NCS is left again just before the execution
finishes4. The time period during which the NCS was acquired is represented by the flat orange line. The
flatness shows us that acquiring the NCS did not have any influence on its inherited deadline level.
A more interesting example is given by task τ3. It acquires three nested critical sections, where the third NCS
is nested in the second. At t = 22500ms a new job for τ3 starts after which it enters its first NCS immediately.
We can see that its relative inherited deadline is set to 400ms, inherited from τ1. The small pink arrow at
t = 22900ms denotes the absolute inherited deadline level for both the first and third NCS, as they share the
same inherited deadline level. Around t = 22580ms the release timer for task τ2 fires. While the priority of τ2

is higher than the priority of τ3, it is not allowed to start: its execution is blocked over the “flashrom” resource
currently held by τ3. When τ3 releases this resource the job execution for τ2 is allowed to start, preempting τ3.
Around t = 23400ms the release timer for τ2 fires just before that of τ3. This time τ2 does not have to wait.

4Observe that the job of task τ1 that starts around t = 22780ms uses more computation time than specified in table 6.1. The cause of
this problem is discussed in paragraph 6.2.2.
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6.2 Test setup

6.2.1 Overhead breakdown

To get accurate scheduler overhead measurements we first need to determine where the overhead can actually
occur. Figure 6.2 shows a schematic overview of the job execution of the real-time task code shown in 6.3. The
overview is marked with various points of interest.

The job’s life cycle begins when it starts its period, denoted by the left-most CTX (context switch). After the
context switch itself, the task will perform various administrative tasks such as signal handling. When the job
execution reaches point S (start), the job will starts its normal execution. The execution will continue until point
F (finish) is reached. The interval starting at point F to the point where the job execution ends is also used for
various administrative tasks, such as moving the task from the run stack to the waiting queue.

Figure 6.2: Job execution showing scheduler overhead

static void *pthread_routine(void *arg)
{

... task initialization ...
while (1)
{

pthread_wait_np ();
// Start
/* ... do something ... */
pthread_ncs_enter();
/* ... do something ... */
pthread_ncs_leave();
/* ... do something ... */
pthread_ncs_enter();
/* ... do something ... */
pthread_ncs_enter();
/* ... do something ... */
pthread_ncs_leave();
/* ... do something ... */
pthread_ncs_leave();
/* ... do something ... */
// Finish

}
}

Figure 6.3: Example pthread routine

Every moment of the job’s life-cyle that is not spent on performing its actual task is considered to be scheduler
overhead. These are the areas shown light gray in figure 6.2. Overhead includes for example the interval
between the initial CTX and point S, or the interval between point F and the point where the job ends. The dark
gray area depicts an interval during which the job is preempted. The time during which the job is preempted can
not be considered overhead for the currently running job. The preemption however does impose some overhead
on the running job, such as the need for an additional context switch for example.

Observe that the task shown in figure 6.3 has three nested critical sections. The gray areas marked E1, E2,
and E3 in figure 6.2 depict the overhead caused by entering the first, second and third nested critical section.
Similarly the areas L1, L2 and L3 depict the overhead caused by leaving those nested critical sections again.
Finally there are the dotted, periodic appearing areas. These areas depict the timed, periodic execution of the
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scheduler. In our implementation the timer was programmed to generate interrupts at 2KHz, equal to the default
RT-Linux setting.

We will use Oi,j to denote the scheduling overhead imposed on job j of task i.

6.2.2 Data acquisition

After running several experiments using the Scheduler Insight tool to measure scheduler overhead, we found
that the measurements themselves caused too great an impact on the result. This was caused by the overhead
that the FIFO used by Scheduler Insight imposed on the kernel. During his research F. T. Y. Hanssen observed
the same problem while performing measurements on scheduling performance in RT-Linux[6]. The impact of
this problem is illustrated by the job execution of τ1 shown in figure 6.1. Its two jobs depicted in the figure were
executing exactly the same code. Observe that while the first job completes its execution in roughly 200ms, the
second job is already finished within 100ms; a discrepancy of more than 100ms on a total execution time of
around 100ms.

To get more accurate results, we had to slightly modify the real-time tasks and the scheduler itself. The modifi-
cations included time-stamping at specific moments in time (a relatively fast operation), and storing the results
in fixed storage spaces. The timestamps were retrieved using the POSIX gethrtime() function, which
returns the number of nanoseconds since system boot in a data type called hrtime t (basically a C long
long). Several hrtime t variables were added to every task to store the important timing information. The
overhead these additions imposed turned out to be negligible5. When a task was deleted from the system the
timing information was printed to the standard UNIX syslog6.

6.2.3 System configuration

All tests were carried out on a system containing an Intel Pentium IV processor running at 2.6GHz and holding
512Kb of cache memory. The system had 512 MB of RAM installed.

The base operating system was Fedora Core 3, which was modified to use the stock Linux 2.4.27 kernel. The
RT-Linux kernel that was used was version 3.2-rc1, from which we modified the scheduler to implement DMI
and EDFI. The compiler used to compile the Linux and RT-Linux kernels was GCC version 3.2.3. No changes
were made to the default compiler flags.

Several system and scheduler aspects which influence the overhead of the scheduler could be configured. The
configuration used in our tests was:

• Debugging support: disabled

• FPU support: disabled

• POSIX signals: disabled

• POSIX timers: disabled

• Tracer support: disabled (ability to log several scheduler aspects)

• All experimental optimizations: disabled

No system services, except networking, were enabled in our Fedora installation.

5Creating a time-stamp took around 30ns on our test system described in paragraph 6.2.3. This turned out to be negligible compared to
the scheduler overhead results described in paragraph 6.3.

6We retrieved the data from the syslog for further processing using a simple “awk” script.
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6.3 Results

This section will present the results of several tests that have been conducted. It must be noted that for some
tests the absolute values presented in their results are not that important. If for example test 6-1 was executed
on a system with a slower Pentium IV processor, then the measured absolute overhead values would turn out
to be higher. For tests such as 6-3 and 6-4 the relationship between the various measurements is important. In
test such as 6-1 and 6-2 the overall behavior of the schedulers is the important factor.

6.3.1 Test 6-1: DMI scheduler overhead

Test 6-1 was constructed to present an indication of the general behavior of the scheduler overhead. The used
configuration used was:

• Scheduling policy: DMI

• Task set: Γ6−1(n), as shown in table 6.2

• Test duration: 300 seconds

• Number of tests: 51 tests were executed, with n = 1, 10, 20, 30, .., 500

• Measurement: the average scheduler overhead per job execution

Γ6−1(n) D T C
τ1 1000 1000 1
τ2 1000 1000 1
... 1000 1000 1
τn 1000 1000 1

Table 6.2: Specification for Γ6−1(n), values in milliseconds

Given this configuration, test 6-1 will take 51 ∗ 300 seconds to execute. For every task 300 jobs are executed
given the period of 1 second. Every task measures the scheduler overhead (as specified in paragraph 6.2.1)
its jobs experience. At the end of every test execution the amount of overhead that the tasks encountered is
summed, and divided by the total number of jobs. This gives the average scheduler overhead per job execution
(ASO):

ASO =

∑
i=1..n

j=1..300
Oi,j

n ∗ 300
(6.1)

Observe that no preemption will take place using task set Γ6−1. Given this fact and the (hopefully) linear
performance characteristics of the implementation as described in paragraph 4.3.3, we expected the ASO graph
to be rising linearly with the number of tasks in the system.
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Looking a the results shown in figure 6.4 we find that the actual results and our expected results are a close
match. The average overhead per job execution is clearly linearly related to the number of tasks in the system.
The results show an almost straight line, which seems to be primarily caused by the fact that tasks moving from
the waiting queue to the ready queue can always be entered in the first position: all tasks have the same relative
deadline, meaning equal priorities under DMI.
The jump of roughly 2µs that occurs when approximately 470 and 490 tasks are in the system is hard to explain.
We suspect processor cache misses are occurring, resulting in a short delay where the processor fetches one or
more cache-lines from the main memory. However, given the complexity of the Pentium IV caching mechanism
we were unable to proof the correctness of this assumption.
To see if this assumption was plausible, we executed the same test on a different test system. This system
contained an Intel Pentium M processor at 1.5GHz and holding 1MB of cache memory. Similar to our primary
test system it had 512MB of RAM installed and it used the exact same operating system configuration. Given
larger cache size of the processor, we expected the jump shown in figure 6.4 to disappear if cache misses were
its cause. The results of this test are shown in figure 6.5. We find a flat line now, suggesting that the jump is
indeed caused by processor cache misses.

Figure 6.4: DMI scheduler overhead for Γ6−1
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Figure 6.5: DMI scheduler overhead for Γ6−1 on a CPU with 1MB cache

6.3.2 Test 6-2: EDFI scheduler overhead

The configuration of test 6-2 is similar to that of test 6-1, except that the scheduling policy used is EDFI instead
of DMI. The results of the test are shown in figure 6.6.

Again, no preemption will take place as all tasks share the same relative deadline. We expected the EDFI
results to be roughly the same as the DMI result from test 6-1, but slightly more irregular as the difference in
the ordering of the ready queue will start to be noticeable (see paragraph 4.3.3 for details on the queue insertion
process). Especially when more tasks are admitted into the system at the same time.

The test results depicted in figure 6.6 show that the EDFI overhead behavior is indeed similar, but more erratic
than that of DMI. Strangely enough we see that initially the average overhead drops (albeit only by roughly
1µs), only to start increasing when more than 30 tasks are in the system. While these results were easily
reproduced, we could not find a proper explanation for this behavior7.

7During the first presentation of this report a member of the audience suggested that, similarly to test 6-1 where cache misses were
thought to be occurring, the initial drop might be caused by the processor cache “filling up”. This might prove to be a explanation for the
observed behavior. However, if this is indeed the cause of the drop then we would have expected it to show up roughly equally strong in
test 6-1 as well, but there the initial drop is a lot smaller.
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Figure 6.6: EDFI scheduler overhead for Γ6−1

6.3.3 Test 6-3: Periodic scheduler overhead

Test 6-3 was designed to measure the average impact of the periodic scheduling interrupt generated at 2KHz.
The used configuration used was:

• Scheduling policy: DMI and EDFI

• Task set: Γ6−3(c), as shown in table 6.3

• Test duration: 600 seconds

• Number of tests: 11 tests were executed for both DMI and EDFI, with c = 1, 10, 20, ..., 100ms

• Measurement: the average scheduler overhead per job execution

Γ6−3(c) D T C
τ1 2000 2000 c
τ2 2000 2000 c
... 2000 2000 c
τ10 2000 2000 c

Table 6.3: Specification for Γ6−3(c), values in milliseconds

Observe that the periodic scheduler timer will interrupt a job with a load of 1ms twice, while a job with a load
of 100ms will be interrupted 200 times. Therefore we expected that the scheduler overhead per job execution
would slowly increase with an increasing job length.

The test results shown in figure 6.7 match our expected outcome. The results show a significant increase in
scheduler overhead for DMI as well as EDFI when the job load increases. We find for example that when the
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Figure 6.7: Scheduler overhead for Γ6−3

load of a task becomes 100 times longer (from 1ms to 100ms), the scheduler overhead imposed on the task
increases slightly less than 100 times (from 4639ns to 419715ns for DMI and from 4642 to 421054 for EDFI).
The less than 100 times increase in scheduler overhead can easily be explained. Observe that when the load of
a task increases the same schedule is generated, only stretched in time. Also observe that the total scheduler
overhead measured during this test consists of two parts. The first part is the scheduler overhead that is needed
to execute the schedule; this will obviously be exactly the same for every test run. The second part is the
scheduler overhead that is caused by the periodic timer interrupts; when the load of a task doubles, the number
of periodic timer interrupts imposed on the task doubles too. The second part is responsible for the linear
correlation between the load of a task and the imposed scheduler overhead, while the first part is the cause of
the smaller than 1 ratio between the increase in load of a task and the increase in imposed scheduler overhead.

6.3.4 Test 6-4: Job execution jitter

Test 6-4 was designed to inspect the job execution jitter, eg. the variations in job execution duration. The used
configuration used was:

• Scheduling policy: DMI and EDFI

• Task set: Γ6−4, as shown in table 6.4

• Test duration: 600 seconds

• Number of tests: 1 test was executed for DMI and 1 for EDFI

• Measurement: the job execution time

C∗: the workload for every job was to calculate the 9999999th Fibonacci number.
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Γ6−4 D T C∗

τ1 2000 2000 -
τ2 1950 1950 -
... ... ... -
τ10 1550 1550 -

Table 6.4: Specification for Γ6−4, values in milliseconds

The periods and deadlines of each task were made different, so preemption could occur. Paragraph 6.2.1
describes what we consider to be the job execution length. Note that time interval during which a job is
preempted will be subtracted from the measured job execution length.

Figure 6.8: Job execution jitter

Variations in job execution length will come from factors that the scheduler can control, such as overhead
differences (eg. differences in ready queue length or a job that is preempted or not) and from external factors,
such as generated system interrupts. As all tasks have the same workload, we expected the job executions of
every task to be roughly equal.

The test results shown in figure 6.8 overall match our expected outcome. Tasks scheduled under EDFI or DMI
show the same job execution time. The job execution time for both DMI and EDFI varies slightly, roughly
within a range of 250µs. Some DMI scheduled jobs however have a peculiar short execution length, roughly
900µs shorter than the rest. While we currently we can’t explain this difference, we do not expect this result to
be caused by the scheduler itself. The difference seems to be too high for that to be the case.

6.3.5 Test 6-5: Dynamic task admission and removal

Test 6-5 was designed to test the impact of task insertion and removal on an already running task set. The used
test configuration was:
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• Scheduling policy: DMI

• Task set: Γ6−5a and Γ6−5b, as shown in table 6.5 and 6.6

• Test duration: 180 seconds

• Number of tests: 5 tests were executed

• Measurement: the overhead experienced by a job at a particular moment in time

Γ6−5a D T C
τ1 500 600 100
τ2 500 600 100

Table 6.5: Specification for Γ6−5a, values in milliseconds

Γ6−5b D T C
τ3 700 800 200
τ4 700 800 200

Table 6.6: Specification for Γ6−5b, values in milliseconds

The test was configured to insert task set Γ6−5a into the system, were it was allowed to execute for 180 seconds.
After 70 seconds of execution task set Γ6−5b, consisting of lower priority tasks, was admitted into the system.
The tasks from Γ6−5b were allowing to run for 40 seconds before being removed again. This process was
repeated for five times.
We expected the scheduler overhead experienced by the jobs from Γ6−5a to change by a very small amount
when additional tasks were entered into the system. Of particular interest however is the scheduler overhead
imposed on jobs from Γ6−5a immediately after the admission of Γ6−5b. A brief increase in overhead was
expected.

The results for this test are shown in figure 6.9, which look even better than expected. The admission of new
tasks did not interfere with the already running tasks at all. The scheduler overhead imposed on the jobs from
Γ6−5a does not change when Γ6−5b enters or leaves the system. Interestingly the amount of scheduler overhead
imposed on the tasks from Γ6−5b differs every time it is inserted into the system. This might be caused by the
different moments in time at which Γ6−5b becomes part of the running schedule. Different starting times for
example might cause less jobs from Γ6−5b to be preempted, resulting in less overhead being imposed on them.

6.3.6 Test 6-6: NCS usage

Test 6-6 was designed to test the impact of entering an leaving nested critical sections. The used configuration
used was:

• Scheduling policy: EDFI

• Task set: Γ6−6, as shown in table 6.7

• Test duration: 450 seconds

• Number of tests: 1 test was executing with MUR enabled, and 1 without

• Measurement: the NCS overhead per job execution

49



6. Scheduler analysis

Figure 6.9: Dynamic task admission and removal

Γ6−6 D T C R∗

τ1 1500 1500 300 -
τ2 1500 1500 300 -
τ3 1500 1500 300 -
τ4 1500 1500 300 -

Table 6.7: Specification for Γ6−6, values in milliseconds

Note that there is no need to perform the same test under DMI as well. The NCS implementation for both
algorithms is exactly the same.

R∗: as the overhead of entering and leaving a NCS will be rather low (see paragraph 5.6.2), a task must have
quite few NCSs to get some measurable results. Therefore each task will be equipped with a rather insane NCS:

300 { r
100{a 10{B} 10{C} 10{b} 10{c} 10{B c} 10{b C} 10{b c} 10{B C}}
100{b 10{A} 10{C} 10{a} 10{c} 10{A c} 10{a C} 10{a c} 10{A C}}
100{c 10{A} 10{B} 10{a} 10{b} 10{A b} 10{a B} 10{a b} 10{A B}}

}
It must be noted that measuring the NCS overhead itself generates overhead as well. A time-stamp is made
on entering and leaving the pthread ncs enter() function. The same is done when entering and leaving
the pthread ncs leave() function. Given the NCS used in this test, 28 enter and leave calls are made
by each job. Making a time-stamp takes roughly 30ns (see paragraph 6.2.2), so the total overhead from the
measurements alone will be around 28 ∗ 2 ∗ 2 ∗ 30 = 3360ns.
We expected the results in the non-MUR enabled test to be not much higher than the measuring overhead itself
(see paragraph 5.6.2). For the MUR enabled test we expected the results to be slightly worse, as the inherited
deadline calculation is performed online (see paragraph 3.7.2).
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Figure 6.10: NCS overhead

The results depicted in figure 6.10 show that in the non-MUR enabled test the NCS overhead behaves as
expected. All jobs experienced a NCS overhead of around 3600ns, which is just marginally higher than the
overhead caused by the measurements itself. This means that the traversing a NCS structure is indeed as fast as
we expected it to be. Notice that the first few data points (for both the non-MUR as the MUR enabled test) are
about twice as high as the other data points. This result is expected, as the inherited deadline values calculated
during the feasibility analysis are dynamically adopted for each NCS (see paragraph 5.6.3).
Looking at the MUR enabled test results we find that the overhead that is generated is substantially higher than
in the non-MUR enabled case. This result was predicted in paragraph 3.7.5.

The results also show that compared to the rest of the jobs, a dramatically higher overhead is imposed on a few
jobs; roughly 60µs higher. The cause of these spikes might lie in the way the measurements are performed: first
a time-stamp is taken when pthread ncs enter is called (see section 5.5). Next, interrupts are disabled,
followed by the process of performing the bookkeeping needed to enter a NCS and adapt the inherited deadline
level. Finally interrupts are enabled again and a final time-stamp is taken. The interval between the two time-
stamps is considered to be NCS overhead. A similar process is performed when pthread ncs leave is
called.
Now imagine that a job is interrupted exactly in between the moment of taking a time-stamp and enabling or
disabling the interrupts. This will cause the duration of the interrupt handling routine to be considered NCS
overhead, which will show up as a spike in the test results.
The fact that we only see these spikes in the MUR enabled test might be caused by the longer time needed
to enter or leave a NCS. During this process interrupts might occur that can be handled immediately after
enabling interrupts again (that is, just before the final time-stamp is taken). The chance of this happening is
simply greater in the MUR enabled test than in the non-MUR enabled test. We thus expect similar spikes to
occur in the non-MUR enabled test if it is executed often enough. Whether or not this is indeed the cause of the
spikes can be tested by moving the time-stamping in between the interrupt disabling and enabling calls. Note
however that the actual measured NCS overhead would then show a result that is slightly too low.
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6.3.7 Test 6-7: Typical task set

The last test was designed to measure the scheduler performance when execution a task set that could resemble
a typical “real-life” situation. The used configuration used was:

• Scheduling policy: EDFI

• Task set: Γ6−7, as shown in table 6.8

• Test duration: 1000 seconds

• Number of tests: 1 test was executed

• Measurement: the scheduler overhead per job execution

As an exercise to the reader, observe that this task set is infeasible under DMI.

Γ6−7 D T C Resources
τ1 4 5 1 0.9 { a B }
τ2 5 8 1 0.8 { a 0.2 { B 0.1 { C }}}
τ3 6 10 2 0.2 { b } 1.7 { c 1.3 { b }}
τ4 9 9 3 1.8 { a b }

Table 6.8: Specification for Γ6−7, values in seconds

Figure 6.11: Typical task set scheduler overhead

The results depicted in figure 6.11 show that τ3 and τ4 experienced the most overhead. Looking at the generated
schedule we found that τ4 was frequently preempted because of its long relative deadline and short NCS length
(observe that within its NCS, τ4 will inherit the deadline from τ1 over resource b, making it non-preemptable).
τ1 on the other hand was never preempted given its shortest relative deadline. τ2 didn’t happen to be preempted
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either because of its short relative deadline and the fact that it inherited for part of its execution the deadline
from τ1 over resource B. While τ3 wasn’t preempted due to inheriting the deadline of τ1 and τ2 for most of
its execution time, its longer execution length made it experience an additional 4.5ms overhead compared to τ1

and τ2.

Given the hyperperiod of 360 seconds of the task set, we summed the overhead imposed on all four tasks during
that time period. The total amount of scheduler overhead generated was 1.328 seconds, resulting in an overhead
percentage of just 1.328

360 ∗ 100% = 0.369%.

6.3.8 Discussion

The test results regarding the behavior of our schedulers look very promising, as most results were in line with
our expectations. Test 6-1 measured the correlation between the number of tasks in the system and the average
scheduler overhead imposed on a job. The data is encouraging, showing only a doubling of the scheduler
overhead imposed on a job when the number of tasks increased four-hundred-fold. The results also showed an
unexpected jump in the average scheduler overhead graph when 470 tasks were admitted into the system. With
reasonable certainty however we can attribute these results to processor cache misses, as the jump did not show
up when testing with a processor having twice as much cache memory as our target processor. This also shows
that, hardly surprising, the behavior of the scheduler depends on the hardware it is executing on.
Test 6-2 also performed in line with our expectations, with only a small initial drop in the average scheduler
overhead graph. To a lesser extend this showed up in the results of test 6-1 as well. Further research needs to be
done to find the cause of this result. Investigating the possibility of the processor cache filling up might prove
to be a good starting point.
The influence of the periodic scheduler overhead was measured by test 6-3. The results of this test matched
our expectations exactly; increasing the load of a task with a factor f also increases the amount of scheduler
overhead imposed on the task, but with a factor slightly lower than f .
Job execution jitter was measured in test 6-4 by executing a number of jobs with an equal load. The results
showed that the jitter was occurring in a narrow band of roughly 250µs. Strangely enough 3 out of the 3010
jobs executed completed about 900µs earlier than the rest. This could not have been caused for example by
system interrupts, as that would increase the execution length of the jobs, not shorten it. While the shorter
execution length obviously is not harmful to the feasibility of the system, it would be interesting to know what
is causing these results.
The impact of task admission and removal on an already running task set was measured by test 6-5. Test results
showed that neither task admission nor removal have a significant impact on the overhead that is imposed on
the tasks that are already in the system. This is interesting, as it shows that the measures taken during the
implementation to prevent overhead peaks from occurring work in practice (see paragraph 5.6.3). Scheduler
overhead caused by entering and leaving a NCS was measured by test 6-6. As expected the overhead is almost
to low to measure. When multi-use resources are used the overhead increases significantly, as predicted in
paragraph 3.7.5. Even more, 15 out of the 1200 measurements taken showed a significantly higher overhead
during the MUR enabled test. A possible cause of these unexpected results is discussed, which could use some
further investigation.
Finally test 6-7 was created to measure the scheduler overhead that could resemble a typical real-life situation.
The scheduler overhead made up 0.369% of the total execution time, which is a very respectable result.
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Chapter 7

Future work

This chapter tries to identify several areas that could benefit from future work or research, some regarding the
discussed theory and some regarding our implementation.

7.1 Theory

Several scheduling concepts presented in this paper deserve some more attention, especially the DTA condition
and multi-use resource theory.

7.1.1 DTA condition analysis

The DTA condition we presented in section 3.5 followed naturally out of the existing DMI and EDFI theory.
While the condition is better than several alternative solutions discussed in the same section, we can not deter-
mine how good or bad it actually is. Is it optimal, or not? And if not, could a better or even optimal solution
be constructed that is also useful in practice? Answering these questions could make it possible to improve our
implementation.

Observe that the DTA condition from section 3.5 can not be used together with support for multi-use resources.
The DTA condition is based on the notion of static inherited deadlines, a concept that does not apply to MUR.
The current implementation however does allow DTA together with MUR, but tasks are only allowed to enter
the system when the run stack is empty1.

7.1.2 Multi-use resources

At first glance the MUR theory has several commonalities with the SRP. It would be interesting to compare
both theories in more detail. The optimal feasibility analysis for example is NP-complete for both MUR and
the SRP. The MUR feasibility analysis however can be optimized considerable as whole groups of possible
ncs-stacks can be determined to be infeasible at once. Even more, the models that MUR and the SRP deploy
also look similar, but SRP allows simultaneous readers and writers. Determining the differences between both
models might prove interesting.

As mentioned in paragraph 3.7.1, the current MUR model does not allow a task to acquire the same resource
multiple times for reading or writing within a single NCS. To allow for this, several problems would need to
be solved. For a start, the definition of a blocker would have to be redefined. Consider for example a task

1The run stack will be empty at some point in time, otherwise the system would not be feasible. This point will be reached within a
time interval that is smaller than, or equal to the hyper-period of the task set.
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at the front of the ready queue that acquires resource R twice for writing. Assume that R would also have a
writecount of 2. Now if two tasks are on the run stack, each having acquired R for writing, then which task
would be considered to be a blocker? The bottommost task on the run stack, the topmost task or perhaps both?
The last option seems to be the most intuitive solution. In this case the feasibility analysis algorithms would
have to be reconstructed as well, as neither the DMI nor the EDFI feasibility algorithm can deal with blocking
coming from more than one task at the same time.
Until these issues are resolved (and probably more would come up in the process), the MUR model can not
allow a resource to be acquired multiple times within a single NCS.

7.2 Implementation

Several implementation details could use some attention as well, mostly to improve the robustness of our
implementation. We will briefly address the most important (in our opinion) outstanding issues in this section.

7.2.1 Resource acquisition

Every NCS specifies the maximum time interval that resources can be acquired. At run-time it is important that
this interval is not exceeded, as that could endanger the feasibility of the whole system. Therefore the duration
that resources are acquired should be monitored. While such additional checks will increase the scheduler
overhead slightly, the safety of the system might be worth it.

Our current resource handling mechanism needs to be improved in the case that a task exceeds its deadline.
As described in paragraph 4.3.4, the offending task will be moved to the waiting queue and will be flagged
DEAD to prevent it from executing again. This approach works fine in the case no resources are acquired at
the moment the deadline is exceeded. However, when resources are acquired, they will not be released again
as the task is prevented from executing. To solve this problem, a signaling mechanism should be added to our
implementation to force a task to release all its currently held resources when it exceeds its deadline.

7.2.2 Semantical correctness

Every task has a resource usage description, which is a character string that is specified by the application
programmer. This string is automatically parsed into a structure that can be used by the admission control
mechanism and the scheduler. The current implementation checks the resource usage description for syntactical
correctness, but not for semantical correctness.
Additional checks could be added to verify semantical correctness of a resource usage description. For example
a NCS embedded inside another NCS should not have a bigger load specified than the load of its parent.
Additionally an embedded NCS should not re-acquire resources that one of its parents already acquired; the
child NCS can safely access such resources without any additional specification. Finally, in the case of multi-
use resources, the admission control mechanism could check if all tasks specify the read and writecount of all
resources equally. If one task specifies a resource to be R4,1 and another task specifies the same resource to be
R2,1, then clearly something is wrong. In such a case tasks should be prevented from entering the system.

7.2.3 Timer latencies

Currently the scheduler uses a periodic timer generating interrupts at 2Khz. While this will generally be “fast
enough”, it means that the release timer latency (the interval between the actual firing of the release timer and
when it was supposed to fire) can be as long as 500µs. The same holds for the deadline timer latency.
Improvements to reduce the timer latencies can be made by not statically setting the next interrupt to be gener-
ated 500µs after the previous interrupt was generated, but by determining when the next timer event is actually
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supposed to take place. The scheduler currently does have all the information needed to make such a decision,
so it only needs some additional bookkeeping to keep track of the event sequence.

7.2.4 Backwards compatibility

While special care has been taken to allow existing (legacy) RT-Linux applications to run under the new sched-
ulers, no guarantees for proper functioning can be given at the moment. As legacy applications do not have an
explicit relative deadline (see paragraph 4.2.1), an artificial relative deadline is created automatically equal to
the period of the task. Similarly legacy applications do not have a resource usage specification. In this case an
empty specification is assumed.

7.2.5 Measurements

As described in section 6.3, most test results conformed to our expectations. However, some anomalies such
as the initial drop in scheduler overhead in test 6-2, or the spikes in the MUR enabled test from test 6-6 are
currently unexplained. These unexpected results should be looked into.

7.2.6 Testing

The interaction between several aspects of the theory and in some parts its complexity has lead to a relatively
complex implementation. Fortunately the online operation of the scheduler has been kept relatively simple,
with all computational and algorithmical complexity moved into the admission control mechanism. The DMI
and EDFI feasibility analysis algorithms (including the use of the presented bounded feasibility theory), support
for dynamic task admission, non-preemptable nested critical sections and support for multi-use resources (in-
cluding both the sufficient and necessary feasibility analysis algorithms) have all been implemented and work
in all possible combinations. An EDMI scheduler with support for MUR, NPNCSs and DTA can readily be
used, for example.

Given the complexity and configurability of the implementation, and the huge variety of task sets that can be
created using an equally wide range of NCS configurations, it is almost impossible to test every combination
for functional correctness. While we worked hard to create a bug-free implementation, we can’t guarantee its
complete correctness, though no bugs are currently known.
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Chapter 8

Conclusions

In this paper we have summarized and verified the existing DMI and EDFI theory. Imperfections in the DMI
feasibility analysis, resource read and write floor definitions and NCS specification language have been cor-
rected. Both the DMI and EDFI feasibility analysis have been modified to allow for nested critical sections.
Finally we have presented a more precise feasibility bound for EDFI.

A number of additions to the exiting theory has been made. A dynamic task admission condition has been
presented and proved for its correctness. A theory has been given to allow non-preemptable sections that can
be easily implemented and used in practice. Finally a theory to allow the use of multi-use resources has been
presented. This theory contains a sufficient as well as a necessary feasibility algorithm.

To implement the DMI and EDFI schedulers in RT-Linux, a design has been constructed that makes the RT-
Linux scheduler framework cooperate nicely with the scheduler organisation required by DMI and EDFI. Our
implementation supports all DMI and EDFI related theory discussed in this paper. Special care has been
taken to guarantee that the worst case performance of the schedulers was as low as possible. The application
programmers interface to control all scheduler features has been kept simple, abstracting all calculations away
from the application designer.

A tool called Scheduler Insight has been created to verify the operational correctness of the schedulers. It can
be used to present the decisions made by the scheduler in an orderly manner, even while the system is currently
executing. Using this tool to visualize the behavior of a real-life DMI or EDFI scheduler might serve a didactic
purpose as well, for example to familiarize students with the theory in an understandable way.

The overall behavior of the overhead generated by the schedulers matched our expectations. Some tests gener-
ated results that where not anticipated. Most of these unexpected results could be explained, while for some a
possible cause was given that could be investigated further. The measurements show that the implementation
behaves, within limits, in a predictable manner. This makes the implementation suitable for example for use in
other research projects that require a resource scheduling real-time system.
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Appendix A

Real-time task example

/* RT-Linux DMI/EDFI TestSuite

*
* Copyright (C) 2004-2005 Marc Maurer <j.m.maurer@student.utwente.nl>

* Released under the terms of the GNU General Public License Version 2

*/

#include <linux/slab.h>
#include <rtl.h>
#include <time.h>
#include <rtl_time.h>
#include <rtl_sched_admctrl.h>
#include <pthread.h>

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Marc Maurer");
MODULE_DESCRIPTION("RTLinux DMI/EDFI test application");

static struct rtl_task_struct *tasks[2];

/*
* The periodic task routine

*/
static void * start_routine(void *arg)
{

struct rtl_task_struct *task = *((struct rtl_task_struct **)arg);
if (!task)
{

rtl_printf("BUG: task is NULL in start_routine!\n");
return 0;

}

pthread_init_finalize_np (pthread_self(), task); /* finish and signal the end of the initialization */
while (1)
{

pthread_wait_np (); /* wait for the next release timer fires */

/* TODO: implementation here */

pthread_ncs_enter();
/* the radio resource can now be acquired for reading,

and the flashrom resource for writing */
/* TODO: implementation here */
pthread_ncs_leave();

/* TODO: implementation here */

pthread_ncs_enter();
/* we are now in a non-preemtable NCS */
/* TODO: implementation here */
pthread_ncs_leave();

/* TODO: implementation here */
}

}
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A. Real-time task example

int init_module(void)
{

/* Contruct an example task set (zero terminated array) with just
one task. Feel free to add more. */

rtl_task_create(&(tasks[0]), 500000000, 400000000, 100000000,
"90000000{ radio FLASHROM } 50000000 { ! }",
0, start_routine, (void*)(&tasks[0]));

if (!tasks[0]) return 1;
tasks[1] = 0;

/* insert the new task set into the system, but only if the new tasks
combined with the tasks that are already present in the system form
a feasible task set */

int feasible = rtl_admctrl_admit_if_feasible(tasks);

rtl_printf("Task set is %s\n", (feasible ? "feasible" : "not feasible" ));

return 0;
}

void cleanup_module(void)
{

/* delete the tasks from the system */
if (tasks[0])
{

if (tasks[0]->pthread)
pthread_delete_np(tasks[0]->pthread);

else
rtl_admctrl_task_free(tasks[0]);

}
}
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Appendix B

Utilities

Several utilities have been created during the development of the DMI and EDFI schedulers and their accompa-
nying admission control mechanisms1. This appendix will briefly discuss the purpose of each utility, so future
developers could benefit from them as well.

B.1 rtlinux-si

This module contains the Scheduler Insight tool discussed in section 6.1. It can be used to debug, verify and
visualize the functioning of the scheduler. It is capable of retrieving scheduling data from a previously stored
scheduling log-file or acquiring it directly from a running real-time scheduler. The scheduling information can
be saved to a file and/or displayed graphically.

B.2 rtlinux-measurements

This module contains the measurement programs that have been used to execute the tests discussed in section
6.3. These test programs can be used to duplicate the results we presented, or to produce results using a system
with a different configuration from the one discussed in paragraph 6.2.3.

B.3 rtlinux-testsuite

The test suite contains a set of example programs that tests all aspects of the DMI and EDFI schedulers as
well as the admission control mechanisms. We used this set of programs to verify the correctness of our
implementation (see section 6.1).

B.4 rtlinux-admctrl

The rtlinux-admctrl program implements the same admission control mechanisms as those included in
our kernel implementation. This allows application developers to test the feasibility of task sets in “userspace”,

1The utilities discussed in this appendix, together with our modifications to the RT-Linux source tree, can be found in the CVS (Con-
current Versions System) repository located at http://maas.cs.utwente.nl/cgi-bin/viewcvs.cgi/.
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B. Utilities

and it allows easier debugging of the admission control implementation2.

B.5 rtlinux-sync

A script called rtlinux-sync has been created to keep our local RT-Linux source tree synchronized with
the official RT-Linux source tree3. All changes made to the official source tree since the last synchronization
run can be merged into our local tree using this script. Changes to the scheduler code will be excluded from the
synchronization process.

B.6 rtlinux-ksymoops

For debugging our scheduler and admission control implementations we initially used the ksymoops4 utility.
This program can produce call-traces by passing it a kernel crash report (the output that the kernel generates
when it “panics”). Using these call-traces a programming error can be localized. Due to unknown reasons
we experienced instabilities in ksymoops itself, making it segfault instead of producing a call-trace. This
lead us to writing a similar tool ourselves, resulting in rtlinux-ksymoops. This tool is equally capable of
generating call-traces by passing it a kernel crash report.

2Errors are typically harder to track down in kernelspace than in userspace. An error made in kernelspace can bring down the complete
system, depriving the developer of the possibility to inspect the state of the system at the moment the error occurred.

3The official RT-Linux source tree is located at http://rtlinux-gpl.org/.
4The ksymoops utility is located at ftp://ftp.kernel.org/pub/linux/utils/kernel/ksymoops/v2.4/.
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